Reputation: 3645
I am trying to solve for C
in the following equation
I can do this with sympy
for an enumrated number of x's
, e.g x0, x2, ..., x4
but cannot seem to figure out how to do this for i=0
to t
. E.g. for a limited number
from sympy import summation, symbols, solve
x0, x1, x2, x3, x4, alpha, C = symbols('x0, x1, x2, x3, x4, alpha, C')
e1 = ((x0 + alpha * x1 + alpha**(2) * x2 + alpha**(3) * x3 + alpha**(4) * x4)
/ (1 + alpha + alpha**(2) + alpha**(3) + alpha**(4)))
e2 = (x3 + alpha * x4) / (1 + alpha)
rhs = (x0 + alpha * x1 + alpha**(2) * x2) / (1 + alpha + alpha**(2))
soln_C = solve(e1 - C*e2 - rhs, C)
Any insight would be much appreciated.
Upvotes: 3
Views: 2586
Reputation: 448
I'm not sure if this can be catalogued as more "concise", but it could be useful too, when you know the upper limit of the summatory. Let's suppose that we want to evaluate this expression:
We can express it, and solve it, in sympy as follows:
from sympy import init_session
init_session(use_latex=True)
n = 4
As = symbols('A_1:' + str(n+1))
x = symbols('x')
exp = 0
for i in range(n):
exp += As[i]/(1+x)**(i+1)
Ec = Eq(exp,0)
sol = solve(Ec,x)
#print(sol)
#sol #Or, if you're working on jupyter...
Upvotes: 0
Reputation: 3645
Thanks to @bryans for pointing me in the direction of Sum
. Elaborating on his comment, here is one solution that seems to work. As I am fairly new to sympy
if anyone has a more concise approach please share.
from sympy import summation, symbols, solve, Function, Sum
alpha, C, t, i = symbols('alpha, C, t, i')
x = Function('x')
s1 = Sum(alpha**i * x(t-i), (i, 0, t)) / Sum(alpha**i, (i, 0, t))
s2 = Sum(alpha**i * x(t-3-i), (i, 0, t-3)) / Sum(alpha**i, (i, 0, t-3))
rhs = (x(0) + alpha * x(1) + alpha**(2) * x(2)) / (1 + alpha + alpha**(2))
soln_C = solve(s1 - C*s2 - rhs, C)
Upvotes: 1