Reputation: 53
I coded the for loop to enumerate a multidimensional ndarray containing n rows of 28x28 pixel values.
I am looking for the index of each row that is duplicated and the indices of the duplicates without redundancies.
I found this code here (thanks unutbu) and modified it to read the ndarray, it works 70% of the time, however 30% of the time it is identifying the wrong images as duplicates.
How can it be improved to detect the correct rows?
def overlap_same(arr):
seen = []
dups = collections.defaultdict(list)
for i, item in enumerate(arr):
for j, orig in enumerate(seen):
if np.array_equal(item, orig):
dups[j].append(i)
break
else:
seen.append(item)
return dups
e.g. return overlap_same(train) returns:
defaultdict(<type 'list'>, {34: [1388], 35: [1815], 583: [3045], 3208:
[4426], 626: [824], 507: [4438], 188: [338, 431, 540, 757, 765, 806,
808, 834, 882, 1515, 1539, 1715, 1725, 1789, 1841, 2038, 2081, 2165,
2170, 2300, 2455, 2683, 2733, 2957, 3290, 3293, 3311, 3373, 3446, 3542,
3565, 3890, 4110, 4197, 4206, 4364, 4371, 4734, 4851]})
plotting some samples of the correct case on matplotlib gives:
fig = plt.figure()
a=fig.add_subplot(1,2,1)
plt.imshow(train[35])
a.set_title('train[35]')
a=fig.add_subplot(1,2,2)
plt.imshow(train[1815])
a.set_title('train[1815]')
plt.show
which is correct
However:
fig = plt.figure()
a=fig.add_subplot(1,2,1)
plt.imshow(train[3208])
a.set_title('train[3208]')
a=fig.add_subplot(1,2,2)
plt.imshow(train[4426])
a.set_title('train[4426]')
plt.show
is incorrect as they do not match
Sample data (train[:3])
array([[[-0.5 , -0.5 , -0.5 , ..., 0.48823529,
0.5 , 0.17058824],
[-0.5 , -0.5 , -0.5 , ..., 0.48823529,
0.5 , -0.0372549 ],
[-0.5 , -0.5 , -0.5 , ..., 0.5 ,
0.47647059, -0.24509804],
...,
[-0.49215686, 0.34705883, 0.5 , ..., -0.5 ,
-0.5 , -0.5 ],
[-0.31176472, 0.44901961, 0.5 , ..., -0.5 ,
-0.5 , -0.5 ],
[-0.11176471, 0.5 , 0.49215686, ..., -0.5 ,
-0.5 , -0.5 ]],
[[-0.24509804, 0.2764706 , 0.5 , ..., 0.5 ,
0.25294119, -0.36666667],
[-0.5 , -0.47254902, -0.02941176, ..., 0.20196079,
-0.46862745, -0.5 ],
[-0.49215686, -0.5 , -0.5 , ..., -0.47647059,
-0.5 , -0.49607843],
...,
[-0.49215686, -0.49607843, -0.5 , ..., -0.5 ,
-0.5 , -0.49215686],
[-0.5 , -0.5 , -0.26862746, ..., 0.13137256,
-0.46470588, -0.5 ],
[-0.30000001, 0.11960784, 0.48823529, ..., 0.5 ,
0.28431374, -0.24117647]],
[[-0.5 , -0.5 , -0.5 , ..., -0.5 ,
-0.5 , -0.5 ],
[-0.5 , -0.5 , -0.5 , ..., -0.5 ,
-0.5 , -0.5 ],
[-0.5 , -0.5 , -0.5 , ..., -0.5 ,
-0.5 , -0.5 ],
...,
[-0.5 , -0.5 , -0.5 , ..., 0.48431373,
0.5 , 0.31568629],
[-0.5 , -0.49215686, -0.5 , ..., 0.49215686,
0.5 , 0.04901961],
[-0.5 , -0.5 , -0.5 , ..., 0.04117647,
-0.17450981, -0.45686275]]], dtype=float32)
Upvotes: 3
Views: 1208
Reputation: 10769
The numpy_indexed package has a lot of functionality to solve these type of problems efficiently.
For instance, (unlike numpy's builtin unique) this will find your unique images:
import numpy_indexed as npi
unique_training_images = npi.unique(train)
Or if you want to find all the indices of each unique group, you can use:
indices = npi.group_by(train).split(np.arange(len(train)))
Note that these functions do not have quadratic time complexity, like in your original post, and are fully vectorized, and thus in all likelihood a lot more efficient. Also, unlike pandas it does not have a preferred data format, and is fully nd-array capable, so acting on arrays with shape [n_images, 28, 28] 'just works'.
Upvotes: 2