Reputation: 1828
Background question:
Suppose we have a data set like:
ID DRIVE_NUM FLAG
1 A PASS
2 A FAIL
3 A PASS
-----------------
4 B PASS
5 B PASS
6 B PASS
-----------------
7 C PASS
8 C FAIL
9 C FAIL
I want to aggregate this data set by DRIVE_NUM by the following rule:
For a specific DRIVE_NUM group,
If there is any FAIL flag in the DRIVE_NUM group, I want the first row with the FAIL flag.
If there is no FAIL flag in the group, just take the first row in the group.
So, I shall get the following set:
ID DRIVE_NUM FLAG
2 A FAIL
4 B PASS
8 C FAIL
Update:
It seems that dplyr solution is even slower than plyr. Am I using anything inappropriately?
#Simulate Data
X = data.frame(
group = rep(paste0("NO",1:10000),each=2),
flag = sample(c("F","P"),20000,replace = TRUE),
var = rnorm(20000)
)
library(plyr)
library(dplyr)
#plyr
START = proc.time()
X2 = ddply(X,.(flag),function(df) {
if( sum(df$flag=="F")> 0){
R = df[df$flag=="F",]
if(nrow(R)>1) {R = R[1,]} else {R = R}
} else{
R = df[1,]
}
R
})
proc.time() - START
#user system elapsed
#0.03 0.00 0.03
#dplyr method 1
START = proc.time()
X %>%
group_by(group) %>%
slice(which.min(flag))
proc.time() - START
#user system elapsed
#0.22 0.02 0.23
#dplyr method 2
START = proc.time()
X %>%
group_by(group, flag) %>%
slice(1) %>%
group_by(group) %>%
slice(which.min(flag))
proc.time() - START
#user system elapsed
#0.28 0.00 0.28
Is there a data.table version that can do it much faster than plyr?
Upvotes: 3
Views: 237
Reputation: 4965
Well, this is not faster than data.table
, but definitely an improvement:
START = proc.time()
m3 <- X %>%
group_by(group) %>%
arrange(flag) %>%
slice(1)
proc.time() - START
#user system elapsed
#0.03 0.00 0.05
# OP - method 1
START = proc.time()
m1 <- X %>%
group_by(group) %>%
slice(which.min(flag))
proc.time() - START
#user system elapsed
#0.31 0.00 0.33
# OP - method 2
START = proc.time()
m2 <- X %>%
group_by(group, flag) %>%
slice(1) %>%
group_by(group) %>%
slice(which.min(flag))
proc.time() - START
#user system elapsed
#0.39 0.02 0.45
identical(m2, m3)
[1] TRUE
Upvotes: 3
Reputation: 887541
Using data.table
library(data.table)
START = proc.time()
X3 = as.data.table(X)[X[, .I[which.min(flag)] , by = group]$V1]
proc.time() - START
# user system elapsed
# 0.00 0.02 0.02
Or use order
START = proc.time()
X4 = as.data.table(X)[order(flag), .SD[1L] , by = group]
proc.time() - START
# user system elapsed
# 0.02 0.00 0.01
The corresponding timings with the dplyr
and plyr
using OP's code are
# user system elapsed
# 0.28 0.04 2.68
# user system elapsed
# 0.01 0.06 0.67
Also as commented by @Frank, a base R
method timing is
START = proc.time()
Z = X[order(X$flag),]
X5 = with(Z, Z[tapply(seq(nrow(X)), group, head, 1), ])
proc.time() - START
# user system elapsed
# 0.15 0.03 0.65
I am guessing the slice
is slowering the dplyr
.
Upvotes: 6