Reputation: 15
I am doing it by checking it from k=3
to n
(given upper value) using this function for each value k
. How can I optimize it to take all prime numbers till n
in an array and not need to check for each number k
?
int primeCheck(long long int k) {
int j;
int isPrime = 1;
int sr = (int)sqrt(k);
for (j = 2; j <= sr; j++) {
if (k % j == 0) {
//printf("=========== %d|%d\n", num,num2); // uncomment this to see if a number is divisible
isPrime = 0; // this number is not prime, cos num can be divided by num2
break;
}
}
if (isPrime) {
return isPrime; // reset the check parameter
} else {
return 0; // reset the check parameter
}
return 0;
}
Upvotes: 1
Views: 731
Reputation: 1254
you can also skip even numbers after 2. something like
int primeCheck(long long int k){
if(k<=1 || k%2==0){ //if number is even return 0 its not prime
return 0;
}
int sr = (int) sqrt(k); //probable divisor
for(int j=3;j<=sr;j+=2){
if(k%j == 0){
//printf("=========== %d|%d\n", num,num2); // uncomment this to see if a number is divisable
return 0; //if number is not prime skip everything and return zero
}
}
return 1; //if loop completes i.e. not divisor found then return return 1
}
Upvotes: 0
Reputation: 2855
Try Sieve of Eratosthenes. This algorithm works by eliminating all the factors of a prime number from 2
to n
.
int main() {
int n;
scanf("%d", &n);
int prime[n+1];
for(int i = 0; i < n+1; i++)
prime[i] = 0;
for(int i = 2; i <= sqrt(n+1); i++) {
if(prime[i] == 0) {
for(int j = i*i; j <= n; j += i)
prime[j] = 1;
}
}
int prime_list[n], size = 0;
for(int i = 2; i <= n; i++) {
if(prime[i] == 0)
prime_list[size++] = i;
}
}
For example let the number initially be:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2
(except 2
) we get:2 3 5 7 9 11 13 15 17 19 21 23 25 27 29
3
(except 3
), we get:2 3 5 7 11 13 17 19 23 25 29
5
(except 5
), we get:2 3 7 11 13 17 19 23 29
Now, there will be no more removals and after a few more iterations for each of the remaining prime numbers, this will be our final list.
The prime[i]
for i = {2, 3, 7, 11, 13, 17, 19, 23, 29}
. We will append all these indices to another prime_list
vector as done in the code. This vector will give all the prime numbers from [2, n]
.
Upvotes: 2
Reputation: 1875
if you want to check a lot of numbers in a range I recommend Sieve of Eratosthenes algorithm.
your function could be better a bit:
int primeCheck(long long int n)
{
if (n <= 1)
{
return 0;
}
if (n <= 3)
{
return 1;
}
if (n % 2 == 0 || n % 3 == 0)
{
return 0;
}
int sr = (int)sqrt(n);
for (int i = 5; i <= sr; i += 6)
{
if (n % i == 0 || n % (i + 2) == 0)
{
return 0;
}
}
return 1;
}
Upvotes: 0