Reputation: 129
I have 3 levels of grouping based on 3 keys: key1, key2, key3 I want to get the sum of a column (c1) for the following combination:
key1, sum(c1)
key1, key2, sum(c1)
key1, key2, key3, sum(c1)
I am getting the sums in 3 different dfs. (sum_k1, sum_k1k2, sum_k1k2k3) I want to combine the dataframe and thereupon convert it to json as follows:
{
key1: {
sum: x1,
key2: {
sum: x2,
key3: {
sum: x3
}
}
}
}
How do I go about this?
Upvotes: 1
Views: 231
Reputation: 129
I used multilevel index for this and xs for this one. Get the lowest level aggregates.
lvl3_grp = df.groupby(['key1', 'key2', 'key3'])['col1', 'col2'].sum()
lvl3_grp = lvl3_grp.reset_index()
lvl3_grp.set_index(['key1', 'key2', 'key3'], inplace=True)
res = {}
for k1 in lvl3_grp.index.levels[0]:
sums = lvl3_grp.xs(k1).sum()
lvl2_grp = lvl3_grp.xs(k1).reset_index()
lvl2_grp.set_index(['key2', 'key3'], inplace=True)
lvl2_dict = {}
for k2 in lvl2_grp.index.levels[0]:
sums = lvl2_grp.xs(k1).sum()
For the last level .index.levels[0]
wont work as its single index. I used .index.values
for iterable list and .loc
inside the for loop for accessing the values.
I'll expand the answer at a later time.
Upvotes: 0
Reputation: 8567
I don't know if this is the most efficient way to go about it, but this is what I came up with
import pandas as pd
import random
# Prepare the sample dataset
table = []
for i in range(100000):
row = {'key1': random.choice('ABC'),
'key2': random.choice('KLM'),
'key3': random.choice('XYZ'),
'val' : random.randint(0,500)}
table.append(row)
df = pd.DataFrame(table)
# Aggregate the first level
dict_agg = (df.groupby('key1')
.sum()
.rename(columns={'val':'sum'})
.to_dict('index'))
# Convert from numpy.int64 to Python scalar
for idx, value in dict_agg.items():
dict_agg[idx]['sum'] = int(dict_agg[idx]['sum'])
# Aggregate the second level
df_lvl2 = (df.groupby(['key1','key2'])
.sum()
.rename(columns={'val':'sum'})
.to_dict('index'))
# Assign the second level aggregation
for idx, value in df_lvl2.items():
dict_agg[idx[0]][idx[1]] = {'sum': int(value['sum'])}
# Aggregate the final level
df_lvl3 = (df.groupby(['key1','key2','key3'])
.sum()
.rename(columns={'val':'sum'})
.to_dict('index'))
# Assign the third level aggregation
for idx, value in df_lvl3.items():
dict_agg[idx[0]][idx[1]][idx[2]] = {'sum': int(value['sum'])}
The end result will look like this:
{'A': {'K': {'X': {'sum': 929178},
'Y': {'sum': 940925},
'Z': {'sum': 938008},
'sum': 2808111},
'L': {'X': {'sum': 902581},
'Y': {'sum': 953821},
'Z': {'sum': 942942},
'sum': 2799344},
'M': {'X': {'sum': 930117},
'Y': {'sum': 929257},
'Z': {'sum': 910905},
'sum': 2770279},
'sum': 8377734},
'B': {'K': {'X': {'sum': 888818},
…
As this is a dict
, you need to convert it to json, by doing:
import json
output = json.dumps(dict_agg)
Upvotes: 1