Reputation: 1645
I have had to do this several times and I'm always frustrated. I have a dataframe:
df = pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], ['a', 'b'], ['A', 'B', 'C', 'D'])
print df
A B C D
a 1 2 3 4
b 5 6 7 8
I want to turn df
into:
pd.Series([[1, 2, 3, 4], [5, 6, 7, 8]], ['a', 'b'])
a [1, 2, 3, 4]
b [5, 6, 7, 8]
dtype: object
I've tried
df.apply(list, axis=1)
Which just gets me back the same df
What is a convenient/effective way to do this?
Upvotes: 24
Views: 4413
Reputation: 12609
Dataframe to list conversion
List_name =df_name.values.tolist()
Upvotes: 0
Reputation: 294556
pandas tries really hard to make making dataframes convenient. As such, it interprets lists and arrays as things you'd want to split into columns. I'm not going to complain, this is almost always helpful.
I've done this one of two ways.
Option 1:
# Only works with a non MultiIndex
# and its slow, so don't use it
df.T.apply(tuple).apply(list)
Option 2:
pd.Series(df.T.to_dict('list'))
Both give you:
a [1, 2, 3, 4]
b [5, 6, 7, 8]
dtype: object
However Option 2 scales better.
given df
much larger df
from string import ascii_letters
letters = list(ascii_letters)
df = pd.DataFrame(np.random.choice(range(10), (52 ** 2, 52)),
pd.MultiIndex.from_product([letters, letters]),
letters)
Results for df.T.apply(tuple).apply(list)
are erroneous because that solution doesn't work over a MultiIndex.
Upvotes: 9
Reputation: 863751
You can first convert DataFrame
to numpy array
by values
, then convert to list and last create new Series
with index from df
if need faster solution:
print (pd.Series(df.values.tolist(), index=df.index))
a [1, 2, 3, 4]
b [5, 6, 7, 8]
dtype: object
Timings with small DataFrame:
In [76]: %timeit (pd.Series(df.values.tolist(), index=df.index))
1000 loops, best of 3: 295 µs per loop
In [77]: %timeit pd.Series(df.T.to_dict('list'))
1000 loops, best of 3: 685 µs per loop
In [78]: %timeit df.T.apply(tuple).apply(list)
1000 loops, best of 3: 958 µs per loop
and with large:
from string import ascii_letters
letters = list(ascii_letters)
df = pd.DataFrame(np.random.choice(range(10), (52 ** 2, 52)),
pd.MultiIndex.from_product([letters, letters]),
letters)
In [71]: %timeit (pd.Series(df.values.tolist(), index=df.index))
100 loops, best of 3: 2.06 ms per loop
In [72]: %timeit pd.Series(df.T.to_dict('list'))
1 loop, best of 3: 203 ms per loop
In [73]: %timeit df.T.apply(tuple).apply(list)
1 loop, best of 3: 506 ms per loop
Upvotes: 22