Reputation: 133
I'd like to use my own binary_crossentropy instead of using the one that comes with Keras library. Here is my custom function:
import theano
from keras import backend as K
def elementwise_multiply(a, b): # a and b are tensors
c = a * b
return theano.function([a, b], c)
def custom_objective(y_true, y_pred):
first_log = K.log(y_pred)
first_log = elementwise_multiply(first_log, y_true)
second_log = K.log(1 - y_pred)
second_log = elementwise_multiply(second_log, (1 - y_true))
result = second_log + first_log
return K.mean(result, axis=-1)
note: This is for practice. I'm aware of T.nnet.binary_crossentropy(y_pred, y_true)
But, when I compile the model:
sgd = SGD(lr=0.001)
model.compile(loss = custom_objective, optimizer = sgd)
I get this error:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) in () 36 37 sgd = SGD(lr=0.001) ---> 38 model.compile(loss = custom_objective, optimizer = sgd) 39 # ==============================================
C:\Program Files (x86)\Anaconda3\lib\site-packages\keras\models.py in compile(self, optimizer, loss, class_mode) 418 else: 419 mask = None --> 420 train_loss = weighted_loss(self.y, self.y_train, self.weights, mask) 421 test_loss = weighted_loss(self.y, self.y_test, self.weights, mask) 422
C:\Program Files (x86)\Anaconda3\lib\site-packages\keras\models.py in weighted(y_true, y_pred, weights, mask) 80 ''' 81 # score_array has ndim >= 2 ---> 82 score_array = fn(y_true, y_pred) 83 if mask is not None: 84 # mask should have the same shape as score_array
in custom_objective(y_true, y_pred) 11 second_log = K.log(1 - K.clip(y_true, K.epsilon(), np.inf)) 12 second_log = elementwise_multiply(second_log, (1-y_true)) ---> 13 result = second_log + first_log 14 #result = np.multiply(result, y_pred) 15 return K.mean(result, axis=-1)
TypeError: unsupported operand type(s) for +: 'Function' and 'Function'
when I replace elementwise_multiply with inline function:
def custom_objective(y_true, y_pred):
first_log = K.log(y_pred)
first_log = first_log * y_true
second_log = K.log(1 - y_pred)
second_log = second_log * (1-y_true)
result = second_log + first_log
return K.mean(result, axis=-1)
the model compiles but the loss value is nan:
Epoch 1/1 945/945 [==============================] - 62s - loss: nan - acc: 0.0011 - val_loss: nan - val_acc: 0.0000e+00
Could someone help me with this please?!
Thanks
Upvotes: 3
Views: 1273
Reputation: 133
I found the problem. I had to multiply the return value by "-1" as I'm using stochastic gradient decedent (sgd) as optimiser and not stochastic gradient ascent!
Here is the code and it works like a charm:
import theano
from keras import backend as K
def custom_objective(y_true, y_pred):
first_log = K.log(y_pred)
first_log = first_log * y_true
second_log = K.log(1 - y_pred)
second_log = second_log * (1 - y_true)
result = second_log + first_log
return (-1 * K.mean(result))
Upvotes: 4