Reputation: 2253
I have the following pandas dataframe:
A B
1 3
0 2
1 4
0 1
0 3
I would like to plot the frequency of B instnaces given A, something like this:
|
|
| __
B | | |
| ___ | |
| | | | |
| | | | |
|__|_|__|__|______________
A
Thus, I tried the following:
df2.groupby([df.A, df.B]).count().plot(kind="bar")
However, I am getting the following exception:
TypeError: Empty 'DataFrame': no numeric data to plot
Therefore, my question is how to plot the frequency of the elements in B given the frequency of A?.
Upvotes: 3
Views: 8874
Reputation: 1645
Here is my way:
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame([[1,3],[0,2],[1,4],[0,1],[0,3]])
df.columns = ['A', 'B']
x = df.loc[:,'A'].values
y = df.loc[:,'B'].values
plt.bar(x, y, label = 'Bar', align='center',)
plt.xticks(x)
plt.show()
Upvotes: 2
Reputation: 6583
Sounds like this is what you want: You can use Series.value_counts()
print(df['B'].value_counts().plot(kind='bar'))
If you don't want the value_count
sorted, you can do this:
print(df['B'].value_counts(sort=False).plot(kind='bar'))
Upvotes: 3
Reputation: 2553
I'm not entirely sure what you mean by "plot the frequency of the elements in B given the frequency of A", but this gives the expected output :
In [4]: df
Out[4]:
A B
3995 1 3
3996 0 2
3997 1 4
3998 0 1
3999 0 3
In [8]: df['data'] = df['A']*df['B']
In [9]: df
Out[9]:
A B data
3995 1 3 3
3996 0 2 0
3997 1 4 4
3998 0 1 0
3999 0 3 0
In [10]: df[['A','data']].plot(kind='bar', x='A', y='data')
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7fde7eebb9e8>
In [11]: plt.show()
Upvotes: 2
Reputation: 1087
I believe if you are trying to plot the frequency of occurrence of values in column b, this might help.
from collections import Counter
vals = list(df['b'])
cntr = Counter(vals)
# Out[30]: Counter({1: 1, 2: 1, 3: 2, 4: 1})
vals = [(key,cntr[key]) for key in cntr]
x = [tup[0] for tup in vals]
y = [tup[1] for tup in vals]
plt.bar(x,y,label='Bar1',color='red')
plt.show()
Another way using histogram
from matplotlib
.
First declare a bins array, which are basically buckets into which your values will go into.
import matplotlib.pyplot as plt
import pandas as pd
l = [(1,3),(0,2),(1,4),(0,1),(0,3)]
df = pd.DataFrame(l)
df.columns = ['a','b']
bins = [1,2,3,4,5] #ranges of data
plt.hist(list(df['b']),bins,histtype='bar',rwidth=0.8)
Upvotes: 1