Reputation: 1127
I'm fairly new to R. I'm working with a data set that is incredibly redundant with a lot of columns (~400). There are several duplicate column names, however the data is not duplicate, so I need to sum the columns when collapsing them.
The columns all have a similar name that allows easy identification, so I'm hoping I can use that to my advantage.
I attempted to perform the following:
ColNames <- unique(colnames(df))
CombinedDf <- data.frame(sapply(ColNames, function(i)rowSums(Test[,ColNames==i, drop=FALSE])))
This works if I sum over the range of columns that only contain integers, but the issue is that other columns have strings and such in them, so rowSums throws a fit.
Assuming that the identifier is "XXX", how can I aggregate all the columns that are of the same name leaving the other columns as is?
Thank you for your time.
Edit: Sample data has been asked for, I cannot give the exact data as it is sensitive, but I will give an example:
Name COL1XXX COL2XXX COL1XXX COL3XXX COL2XXX Type
Henry 5 15 25 31 1 Orange
Tom 8 16 12 4 3 Green
Should return
Name COL1XXX COL2XXX COL3XXX Type
Henry 30 16 31 Orange
Tom 20 19 4 Green
Upvotes: 0
Views: 4481
Reputation: 190
I'm not really sure, but you may try transposing the data and then aggregating by unique names.
t_df=as.data.frame(t(df))
new_df=aggregate(t_df, by=list(rownames(t_df)),sum)
Again, without sample data I'm unsure if it'll work, but based on what you said, that might work.
Upvotes: 1