Reputation: 146
Is there any way to do some computation on a tensor in graph.
Example my graph:
slim = tf.contrib.slim
def slim_graph(images, train=False):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.repeat(images, 2, slim.conv2d, 64, [3, 3], scope='conv1')
// Do my compute by numpy on net
np_array_result = my_func(net)
// It will return a numpy array
// Use numpy array as input of graph
net = slim.max_pool2d(np_array_result, [2, 2], scope='pool1')
...
return logits
I can separate graph into 2 parts and use Session.run([part1]) After that use the result to input my function, then feed it to Session.run([part2])
But it seems weird.
Upvotes: 2
Views: 606