Reputation: 48018
When implementing a primitive fixed-size vector type (float2
for example), I want to support the Add
and Sub
traits. Later, I will want to support Mul
and *Assign
.
Looking up the documentation and other examples, I came up with this:
use std::ops::{Add, Sub};
#[derive(Copy, Clone)]
struct float2(f64, f64);
impl Add for float2 {
type Output = float2;
fn add(self, _rhs: float2) -> float2 {
float2(self.0 + _rhs.0, self.1 + _rhs.1)
}
}
impl Sub for float2 {
type Output = float2;
fn sub(self, _rhs: float2) -> float2 {
float2(self.0 - _rhs.0, self.1 - _rhs.1)
}
}
This works for basic examples, however I found in practice I would often end up with references passed in as arguments as well as local float2
's on the stack.
To mix these I needed to either:
Example:
impl<'a, 'b> Add<&'b float2> for &'a float2 {
type Output = float2;
fn add(self, _rhs: &'b float2) -> float2 {
float2(self.0 + _rhs.0, self.1 + _rhs.1)
}
}
impl<'a> Add<float2> for &'a float2 {
type Output = float2;
fn add(self, _rhs: float2) -> float2 {
float2(self.0 + _rhs.0, self.1 + _rhs.1)
}
}
impl<'b> Add<&'b float2> for float2 {
type Output = float2;
fn add(self, _rhs: &'b float2) -> float2 {
float2(self.0 + _rhs.0, self.1 + _rhs.1)
}
}
/*... and again for Sub */
While this allows to write expressions without de-referencing. it becomes quite tedious to enumerate each combinations, especially when adding more operations & types (float3
, float4
...).
Is there a generally accepted way to...
Or is it expected that developers either:
Note, I'm currently a beginner, I've checked some quite advanced math libraries in Rust, they're way over my head, while I could use them - I would like to understand how to write operator overloading for my own types.
Upvotes: 18
Views: 6146
Reputation: 4405
Use macros or some other feature of the language to avoid tedious repetition?
There are several crates for that. See for instance
Upvotes: 0
Reputation: 9173
I advise you to use the impl_os crate for that purpose, see that other answer that I wrote.
Upvotes: 3
Reputation: 430634
The great thing about Rust is that it's open source. This means you can see how the authors of the language have solved a problem. The closest analogue is primitive integer types:
macro_rules! add_impl {
($($t:ty)*) => ($(
#[stable(feature = "rust1", since = "1.0.0")]
impl Add for $t {
type Output = $t;
#[inline]
fn add(self, other: $t) -> $t { self + other }
}
forward_ref_binop! { impl Add, add for $t, $t }
)*)
}
forward_ref_binop
is defined as:
macro_rules! forward_ref_binop {
(impl $imp:ident, $method:ident for $t:ty, $u:ty) => {
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> $imp<$u> for &'a $t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
fn $method(self, other: $u) -> <$t as $imp<$u>>::Output {
$imp::$method(*self, other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> $imp<&'a $u> for $t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
fn $method(self, other: &'a $u) -> <$t as $imp<$u>>::Output {
$imp::$method(self, *other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, 'b> $imp<&'a $u> for &'b $t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
fn $method(self, other: &'a $u) -> <$t as $imp<$u>>::Output {
$imp::$method(*self, *other)
}
}
}
}
It's certainly valid to write wrapper implementations of the traits for references that simply dereference and call the value-oriented version.
Upvotes: 13