Reputation: 7536
Given the following data frame:
import pandas as pd
df=pd.DataFrame({'A':[0,4,4,4],
'B':[0,4,4,0],
'C':[0,4,4,4],
'D':[4,0,0,4],
'E':[4,0,0,0],
'Name':['a','a','b','c']})
df
A B C D E Name
0 0 0 0 4 4 a
1 4 4 4 0 0 a
2 4 4 4 0 0 b
3 4 0 4 4 0 c
I'd like to add a new field called "Match_Flag" which labels unique combinations of rows if they have complementary zero patterns (as with rows 0, 1, and 2) AND have the same name (just for rows 0 and 1). It uses the name of the rows that match.
The desired result is as follows:
A B C D E Name Match_Flag
0 0 0 0 4 4 a a
1 4 4 4 0 0 a a
2 4 4 4 0 0 b NaN
3 4 0 4 4 0 c NaN
Caveat: The patterns may vary, but should still be complementary.
Thanks in advance!
UPDATE
Sorry for the confusion. Here is some clarification:
The reason why rows 0 and 1 are "complementary" is that they have opposite patterns of zeros in their columns; 0,0,0,4,4 vs, 4,4,4,0,0. The number 4 is arbitrary; it could just as easily be 0,0,0,4,2 and 65,770,23,0,0. So if 2 such rows are indeed complementary and they have the same name, I'd like for them to be flagged with that same name under the "Match_Flag" column.
Upvotes: 3
Views: 273
Reputation: 294488
You can identify a compliment if it's dot product is zero and it's element wise sum is nowhere zero.
def complements(df):
v = df.drop('Name', axis=1).values
n = v.shape[0]
row, col = np.triu_indices(n, 1)
# ensure two rows are complete
# their sum contains no zeros
c = ((v[row] + v[col]) != 0).all(1)
complete = set(row[c]).union(col[c])
# ensure two rows do not overlap
# their product is zero everywhere
o = (v[row] * v[col] == 0).all(1)
non_overlap = set(row[o]).union(col[o])
# we are a compliment iff we do
# not overlap and we are complete
complement = list(non_overlap.intersection(complete))
# return slice
return df.Name.iloc[complement]
Then groupby('Name')
and apply
our function
df['Match_Flag'] = df.groupby('Name', group_keys=False).apply(complements)
Upvotes: 3