Reputation: 1301
Say we have a vector containing zeros interspersed blocks of ones of varying length, such as:
0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0
I would like to transform this into a 2D array as follows. Each row contains zeros only and one of the blocks. I.e. the number of rows of the 2D array would be the number of blocks at the end. The above array would transform to:
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
I.e the first block ends up in the first row, the second block in the second row etc.
Question
This exercise is rather trivial using loops. My question is if there is a neat way using MATLAB matrix operations, MATLAB functions and array indexing to do this?
Upvotes: 0
Views: 46
Reputation: 642
I tried this one
N = 100; % set array size
A = randi(2,N,1)-1; % generate random array filled with 0 and 1
d = diff([0;A]); % if 1 : starting point of block
% if -1 : end point of block
ir = find(A); % Find A==1 which will be row index
ic = cumsum(d(ir)>0); % Set col index
% assemble array
% if you want output as full array
A_new = accumarray([ir,ic],ones(size(ir)),[length(A),ic(end)]);
% if you want output as sparse array
A_new = sparse(ir,ic,ones(size(ir)),length(A),ic(end),length(ir));
% display routine
figure;spy(A,'r');hold on;spy([zeros(size(A)),A_new]);
Turns out it is faster than @Suever 's solution (Compared tic toc time with size 10000, 1000 trial). Also, if you use sparse
instead of accumarray
, then it is much faster
Suever_time = 7~8 sec
Accumarray = 2~3 sec
Sparse = 0.2~0.3 sec
However, his one is much shorter and neat!
Upvotes: 1
Reputation: 65430
Off the top of my head you could use bwlabel
(from the Image Processing Toolbox) to assign each cluster of 1
's a unique value. You could then use bsxfun
to check equality between the labeled version and the unique labels which will automatically expand it out into a matrix.
a = [0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0];
b = bwlabel(a);
out = bsxfun(@eq, (1:max(b))', b);
Without the image processing toolbox you could do effectively the same thing with:
C = cumsum(~a);
out = bsxfun(@eq, unique(C(logical(a))).', C);
Upvotes: 2