Bio
Bio

Reputation: 1563

resampling dataframe with pandas

I have a dataframe called df1

import numpy as np
import matplotlib.pylab as plt
import matplotlib.dates as mdates
from matplotlib import style
import pandas as pd
%pylab inline
import seaborn as sns
sns.set_style('darkgrid')
import io
style.use('ggplot')
from datetime import datetime
import time    

df1 = pd.read_csv('C:/Users/Demonstrator/Downloads/Listeequipement.csv',delimiter=';', parse_dates=[0], infer_datetime_format = True)
df1.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 17 entries, 145 to 161
Data columns (total 6 columns):
TIMESTAMP                 17 non-null datetime64[ns]
ACT_TIME_AERATEUR_1_F1    17 non-null float64
ACT_TIME_AERATEUR_1_F3    17 non-null float64
ACT_TIME_AERATEUR_1_F5    17 non-null float64
ACT_TIME_AERATEUR_1_F6    17 non-null float64
ACT_TIME_AERATEUR_1_F7    17 non-null float64
dtypes: datetime64[ns](1), float64(5)
memory usage: 952.0 bytes

# build HeatMap
df1['TIMESTAMP']= pd.to_datetime(df_no_missing['TIMESTAMP'], '%d-%m-%y %H:%M:%S')
df1['date'] = df_no_missing['TIMESTAMP'].dt.date
df1['time'] = df_no_missing['TIMESTAMP'].dt.time
date_debut = pd.to_datetime('2015-08-01 23:10:00')
date_fin = pd.to_datetime('2015-08-02 02:00:00')

df1 = df1[(df1['TIMESTAMP'] >= date_debut) & (df1['TIMESTAMP'] < date_fin)]
sns.heatmap(df1.iloc[:,1:6:],annot=True, linewidths=.5)
ax = sns.heatmap(df1.iloc[:, 1:6:], annot=True, linewidths=.5)
ax.set_yticklabels([i.strftime("%Y-%m-%d %H:%M:%S") for i in df1.TIMESTAMP], rotation=0)

It is like this :

TIMESTAMP;ACT_TIME_AERATEUR_1_F1;ACT_TIME_AERATEUR_1_F3;ACT_TIME_AERATEUR_1_F5;ACT_TIME_AERATEUR_1_F6;ACT_TIME_AERATEUR_1_F7
2015-07-31 23:00:00;90;90;90;90;90
2015-07-31 23:10:00;0;0;0;0;0
2015-07-31 23:20:00;0;0;0;0;0
2015-07-31 23:30:00;0;0;0;0;0
2015-07-31 23:40:00;0;0;0;0;0

I try to resample it to have for every 30 minute (timestamp) the mean of the values of ACT_TIME_AERATEUR_1_F1;ACT_TIME_AERATEUR_1_F3;ACT_TIME_AERATEUR_1_F5;ACT_TIME_AERATEUR_1_F6;ACT_TIME_AERATEUR_1_F7.

I try to do like this :

df1.index = pd.to_datetime(df1.index)
print(df1.resample('30min').mean())

But I get something strange :

            ACT_TIME_AERATEUR_1_F1  ACT_TIME_AERATEUR_1_F3  \
1970-01-01               40.588235               40.588235   

            ACT_TIME_AERATEUR_1_F5  ACT_TIME_AERATEUR_1_F6  \
1970-01-01               40.588235               40.588235   

            ACT_TIME_AERATEUR_1_F7  
1970-01-01               40.588235  

I don't have these dates 1970-01-01 at all .

Any idea please to help me how it imports 1970?

Upvotes: 2

Views: 582

Answers (1)

Nickil Maveli
Nickil Maveli

Reputation: 29711

It picks up the default integer index and hence you get those strange values when you perform pd.to_datetime of those indices. You need to set TIMESTAMP as the index.

In [2]: df1 = df1.set_index('TIMESTAMP')

In [3]: df1.resample('30min').mean()
Out[3]: 
                     ACT_TIME_AERATEUR_1_F1  ACT_TIME_AERATEUR_1_F3  \
TIMESTAMP                                                             
2015-07-31 23:00:00                      30                      30   
2015-07-31 23:30:00                       0                       0   

                     ACT_TIME_AERATEUR_1_F5  ACT_TIME_AERATEUR_1_F6  \
TIMESTAMP                                                             
2015-07-31 23:00:00                      30                      30   
2015-07-31 23:30:00                       0                       0   

                     ACT_TIME_AERATEUR_1_F7  
TIMESTAMP                                    
2015-07-31 23:00:00                      30  
2015-07-31 23:30:00                       0  

Upvotes: 2

Related Questions