Reputation: 301
I'm writing a high performance application (a raytracer) in C++ using Visual Studio, and I just spent two days trying to root out a performance drop I witnessed after refactoring the code. The reason it took so long was because the performance drop was smaller than the normal variation in execution time I witnessed from run to run.
Not sure if this is normal, but sometimes the program may run at around 33fps pretty consistently, then if you close and rerun, it may run at 37fps. This means that in order to test any new change, I had to manually run and rerun until I witnessed peak performance (And this could require up to like 10 runs). Simply running it for some large number of frames, and measuring the time doesn't fix this variability. For example, if the program runs for 40 seconds on average, it will nevertheless vary by over 1-2 seconds, which makes this test nearly useless for detecting the 1 millisecond per frame performance loss I was dealing with.
Visual Studio's profiling tools also didn't help find this small of an issue, because they also were subject to variation, and in any case, its not necessarily going to tell me the exact offending line, so I have to test solutions, and the profiler is not very effective at confirming a proposed solution's efficacy.
I realize this all may sound like premature optimization, but I don't think it is because I'm optimizing only after finishing complete features; I'm just trying to monitor changes in performance regularly so that issues like the above don't slip in and just get added to the apparent cost of the new feature.
Anyways, my question is simply whether there's a way to objectively determine the "real" speed of an application, discounting the effect of variation. Or, failing that, how do developers deal with such issues? I doubt that my current process is the ideal one.
Upvotes: 2
Views: 339
Reputation: 1073
There are lots of profilers for both c++ and openGL. For those who just need the links, here are they.
C++ profilers but I recommend Google orbit because it has dark theme.
My eyes stopped at
Objectively measure performance
As you mentioned the speed varies from run to run because it's too complex system. It helps if the scope is small and it only tests some key algorithms. It worth to automatize and collect some reference data. As every scientist say one test is not a test, you should rely on regular tests with controlled environments.
And here comes some tricks that can be used to measure performance.
Upvotes: 1