Reputation: 23
I'm trying to start the distributed seq2seq model in Tensorflow. This is the original single-process seq2seq model. I set a cluster(1ps, 3workers) follow the tensorflow distributed tutorial here.
But all workers are stuck forever, and output the same pooling log info:
start running session
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 7623 get requests, put_count=3649 evicted_count=1000 eviction_rate=0.274048 and unsatisfied allocation rate=0.665617
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 100 to 110
This is the cluster setting of translate.py:
ps_hosts = ["9.91.9.129:2222"]
worker_hosts = ["9.91.9.130:2223", "9.91.9.130:2224", "9.91.9.130:2225"]
#worker_hosts = ["9.91.9.130:2223"]
cluster = tf.train.ClusterSpec({"ps":ps_hosts, "worker":worker_hosts})
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
# Worker server
is_chief = (FLAGS.task_index == 0)
gpu_num = FLAGS.task_index
with tf.Graph().as_default():
with tf.device(tf.train.replica_device_setter(cluster=cluster,
worker_device="/job:worker/task:%d/gpu:%d" % (FLAGS.task_index, gpu_num))):
And I used the tf.train.SyncReplicasOptimizer to implement the SyncTraining.
This is part of my seq2seq_model.py:
# Gradients and SGD update operation for training the model.
params = tf.trainable_variables()
if not forward_only:
self.gradient_norms = []
self.updates = []
opt = tf.train.GradientDescentOptimizer(self.learning_rate)
opt = tf.train.SyncReplicasOptimizer(
opt,
replicas_to_aggregate=num_workers,
replica_id=task_index,
total_num_replicas=num_workers)
for b in xrange(len(buckets)):
gradients = tf.gradients(self.losses[b], params)
clipped_gradients, norm = tf.clip_by_global_norm(gradients,
max_gradient_norm)
self.gradient_norms.append(norm)
self.updates.append(opt.apply_gradients(
zip(clipped_gradients, params), global_step=self.global_step))
self.init_tokens_op = opt.get_init_tokens_op
self.chief_queue_runners = [opt.get_chief_queue_runner]
self.saver = tf.train.Saver(tf.all_variables())
This is my complete python code [here]
Upvotes: 1
Views: 369
Reputation: 9900
It seems like Tensorflow people are not ready yet to properly share the experience of running code on a cluster. So far comprehensive documentation can be found only in the source code.
As of version 0.11 according to SyncReplicasOptimizer.py you have to run this after SyncReplicasOptimizer construction:
init_token_op = optimizer.get_init_tokens_op()
chief_queue_runner = optimizer.get_chief_queue_runner()
And then run this after your session is constructed with Supervisor:
if is_chief:
sess.run(init_token_op)
sv.start_queue_runners(sess, [chief_queue_runner])
With SyncReplicasOptimizerV2 introduced with 0.12 this code might not be sufficient so, please, refer to the source code of the version you use.
Upvotes: 1