Reputation: 914
I have two identical data sets consisting of a variable indicating the date, two categorical variables and wage:
data("EmplUK", package="plm")
df<- head(EmplUK, 50)
ggplot(df, aes(x=year, y=wage, colour=sector)) +
stat_summary(fun.y=mean, geom="line", size=2) +
stat_summary(fun.ymin=min, fun.ymax=max, geom="errorbar") +
facet_grid(sector~firm)+theme_bw()
The second data set is only different in regard to wage:
df1<- head(EmplUK, 50)
df1$wage<- df1$wage +10
ggplot(df1, aes(x=year, y=wage, colour=sector)) +
stat_summary(fun.y=mean, geom="line", size=2) +
stat_summary(fun.ymin=min, fun.ymax=max, geom="errorbar") +
facet_grid(sector~firm)+theme_bw()
I would like to combine them both into one graph to have two time series for each grid instead of one, where instead of "sector" on the right hand side with the blue scale ranging from 8 to 3 I have an indicator of these two data sets like "dataset" with df1 and df.
Upvotes: 2
Views: 940
Reputation: 3250
Something like this?
library(ggplot2)
data("EmplUK", package="plm")
df<- head(EmplUK, 50)
df1<- head(EmplUK, 50)
df1$wage<- df1$wage +10
df$source <- rep("df", 50)
df1$source <- rep("df1", 50)
dfAggregate <- rbind(df, df1)
dfAggregate$source <- as.factor(dfAggregate$source)
ggplot(dfAggregate, aes(x=year, y=wage, colour=source)) +
stat_summary(fun.y=mean, geom="line", size=2) +
stat_summary(fun.ymin=min, fun.ymax=max, geom="errorbar") +
facet_grid(sector~firm)+theme_bw()
Upvotes: 1