Reputation: 1867
I have a data set that look like this. There are 5 plots that are spatialy distributed. I want to draw a distribution map that will show the variation of a variable over the experiment. I use geom_tile to do that.
ggplot(aes(x = x, y = y), data = check) + geom_tile(aes(fill = HJD_6))
Is there any way to generate the borders around each plot. I used manualy geom_vline and geom_hline but there are problems whan I have bigger design that is not as regular as in the example.
check <- structure(list(Yta = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L), x = c(1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20), y = c(31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33,
33, 33, 33, 33, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 34, 34,
34, 34, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36,
36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39,
39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 34, 34, 34, 34,
34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39,
39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 40,
40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43,
44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45,
45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43,
43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45,
45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46,
46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51,
51, 51, 51, 51, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 53, 53,
53, 53, 53, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54,
54, 54, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 56, 56, 56, 56,
56, 56, 56, 56, 56, 56, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 59, 59, 59, 59, 59, 59,
59, 59, 59, 59, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60), RAD = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L), PLANTA = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L), HJD_6 = c(136L, NA,
NA, 170L, 133L, 55L, NA, 105L, 120L, 130L, 85L, 95L, NA, NA,
185L, 200L, 85L, 153L, 82L, 80L, 80L, NA, 110L, 130L, 222L, 150L,
NA, 70L, 90L, 172L, NA, 177L, NA, 97L, 65L, 133L, 62L, 52L, 95L,
190L, 154L, 55L, NA, NA, 180L, 130L, 90L, NA, NA, NA, NA, NA,
NA, NA, 148L, NA, NA, NA, 244L, 158L, NA, 164L, NA, NA, 224L,
NA, NA, 139L, 140L, NA, NA, 155L, 135L, 76L, 80L, 130L, NA, NA,
145L, NA, 75L, NA, 105L, 70L, 95L, NA, 95L, 115L, 140L, NA, NA,
NA, 135L, NA, 75L, 98L, 132L, 100L, 105L, 112L, NA, NA, 125L,
105L, 87L, 79L, NA, NA, NA, 165L, NA, 110L, 110L, 133L, 75L,
52L, 117L, 70L, 155L, 130L, 180L, 187L, 110L, 90L, 60L, 120L,
195L, 90L, 100L, 88L, NA, 90L, NA, 112L, 130L, 155L, 152L, 130L,
73L, 122L, 142L, 130L, 150L, 108L, NA, 86L, 125L, 90L, 119L,
125L, 206L, 100L, 95L, 40L, 160L, 222L, NA, 100L, 112L, NA, NA,
NA, 105L, 150L, 185L, NA, NA, 163L, 135L, 115L, NA, 155L, 183L,
NA, 126L, 122L, 150L, 140L, 134L, 80L, 213L, 152L, 63L, 75L,
70L, NA, 115L, 98L, 106L, 130L, NA, 123L, NA, 114L, 65L, 144L,
115L, 60L, NA, 100L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 174L,
50L, 102L, 153L, NA, NA, 85L, 132L, 85L, NA, 72L, 177L, 115L,
141L, 157L, 77L, 70L, NA, 115L, 90L, NA, NA, NA, 40L, NA, 115L,
145L, 100L, 70L, 80L, 151L, 120L, NA, 55L, 200L, NA, 120L, 170L,
185L, NA, NA, NA, 120L, 60L, NA, NA, 95L, 172L, 60L, 155L, NA,
191L, 85L, NA, 65L, 115L, 115L, 175L, 30L, 66L, 195L, 161L, 132L,
NA, 80L, 75L, 115L, NA, NA, 115L, 95L, 151L, 140L, 114L, 140L,
165L, 124L, 168L, 90L, 50L, 160L, NA, 81L, 142L, 135L, 42L, 160L,
NA, 130L, 50L, 172L, 94L, 120L, NA, 140L, NA, 145L, 120L, NA,
NA, 170L, 187L, NA, 141L, 200L, 102L, NA, NA, 136L, NA, NA, 121L,
NA, 60L, 175L, 140L, 175L, 195L, NA, 216L, 77L, 231L, 175L, 210L,
180L, 175L, 260L, NA, 160L, 172L, NA, 135L, 122L, 193L, 115L,
175L, 60L, 85L, 202L, 164L, 159L, 95L, 169L, 190L, 80L, 80L,
120L, NA, 115L, 130L, 172L, 155L, 75L, 72L, 170L, NA, NA, 65L,
75L, NA, NA, 190L, NA, NA, NA, NA, NA, NA, NA, 75L, NA, NA, 90L,
NA, 190L, NA, NA, NA, NA, 52L, NA, NA, NA, 90L, NA, NA, NA, NA,
NA, NA, 93L, 130L, 109L, NA, NA, NA, 100L, NA, NA, NA, NA, NA,
NA, 150L, NA, 202L, 161L, NA, NA, 120L, 50L, NA, 164L, NA, NA,
120L, NA, 138L, NA, NA, 154L, 60L, 57L, 195L, 130L, 75L, NA,
NA, NA, 54L, 95L, 59L, 65L, 52L, 72L, NA, NA, NA, NA, NA, NA,
67L, NA, NA, NA, 168L, NA, NA, NA, 100L, 120L, NA, 195L, 40L,
NA, NA, NA, NA, NA)), row.names = c(NA, -500L), class = c("tbl_df",
"tbl", "data.frame"), .Names = c("Yta", "x", "y", "RAD", "PLANTA",
"HJD_6"))
Upvotes: 0
Views: 112
Reputation: 13118
One idea is to find the convex hull and plot the geom_polygon
. Drawing on How to draw neat polygons around scatterplot regions in ggplot2:
library(plyr)
find_hull <- function(df) df[chull(df$x, df$y), ]
hulls <- ddply(check, "Yta", find_hull)
ggplot(aes(x = x, y = y), data = d) +
geom_tile(aes(fill = HJD_6), colour = "white") +
geom_polygon(data = hulls, aes(x = x, y = y, group = Yta),
colour = "red", alpha = 0)
You can modify hulls
to make the border prettier, but this solution is quite specific to this example:
hulls <- ddply(hulls, "Yta", function(df) {
df$x <- df$x + ifelse(df$x < mean(df$x), -.5, .5)
df$y <- df$y + ifelse(df$y < mean(df$y), -.5, .5)
df
})
Upvotes: 3