Reputation: 503
I have data and have convert using dataframe pandas :
import pandas as pd
d = [
(1,70399,0.988375133622),
(1,33919,0.981573492596),
(1,62461,0.981426807114),
(579,1,0.983018778374),
(745,1,0.995580488899),
(834,1,0.980942505189)
]
df_new = pd.DataFrame(e, columns=['source_target']).sort_values(['source_target'], ascending=[True])
and i need build series for mapping column source
and target
into another
e = []
for x in d:
e.append(x[0])
e.append(x[1])
e = list(set(e))
df_new = pd.DataFrame(e, columns=['source_target'])
df_new.source_target = (df_new.source_target.diff() != 0).cumsum() - 1
new_ser = pd.Series(df_new.source_target.values, index=new_source_old).drop_duplicates()
so i get series :
source_target
1 0
579 1
745 2
834 3
33919 4
62461 5
70399 6
dtype: int64
i have tried change dataframe df_beda
based on new_ser
series using :
df_beda.target = df_beda.target.mask(df_beda.target.isin(new_ser), df_beda.target.map(new_ser)).astype(int)
df_beda.source = df_beda.source.mask(df_beda.source.isin(new_ser), df_beda.source.map(new_ser)).astype(int)
but result is :
source target weight
0 0 70399 0.988375
1 0 33919 0.981573
2 0 62461 0.981427
3 579 0 0.983019
4 745 0 0.995580
5 834 0 0.980943
it's wrong, ideal result is :
source target weight
0 0 6 0.988375
1 0 4 0.981573
2 0 5 0.981427
3 1 0 0.983019
4 2 0 0.995580
5 3 0 0.980943
maybe anyone can help me for show where my mistake
Thanks
Upvotes: 1
Views: 59
Reputation: 6383
If the order doesn't matter, you can do the following. Avoid for
loop unless it's absolutely necessary.
uniq_vals = np.unique(df_beda[['source','target']])
map_dict = dict(zip(uniq_vals, xrange(len(uniq_vals))))
df_beda[['source','target']] = df_beda[['source','target']].replace(map_dict)
print df_beda
source target weight
0 0 6 0.988375
1 0 4 0.981573
2 0 5 0.981427
3 1 0 0.983019
4 2 0 0.995580
5 3 0 0.980943
If you want to roll back, you can create an inverse map from the original one, because it is guaranteed to be 1-to-1 mapping.
inverse_map = {v:k for k,v in map_dict.iteritems()}
df_beda[['source','target']] = df_beda[['source','target']].replace(inverse_map)
print df_beda
source target weight
0 1 70399 0.988375
1 1 33919 0.981573
2 1 62461 0.981427
3 579 1 0.983019
4 745 1 0.995580
5 834 1 0.980943
Upvotes: 2