Reputation: 2051
For example, we have
{2,2,-1},
when k = 0, return -1.
when k = 3, return 3.
This is even tricky because we have negative numbers and an additional variable k. k can be any value, negative, don't make any assumption.
I cannot refer to https://en.wikipedia.org/wiki/Maximum_subarray_problem and https://www.youtube.com/watch?v=yCQN096CwWM to solve this problem.
Can any body help me? Better use Java or JavaScript.
Here is a classic algorithm o(n) for the maximum(no variable k):
public int maxSubArray(int[] nums) {
int max = nums[0];
int tsum = nums[0];
for(int i=1;i<nums.length;i++){
tsum = Math.max(tsum+nums[i],nums[i]);
max = Math.max(max,tsum);
}
return max;
}
Upvotes: 13
Views: 14436
Reputation: 9
# 3 steps to solve Kadane's Algorithm
//approach
sum=0
maxi=arr[0]
for i=0 to arr.length {
//steps
1. sum=sum+arr[i]
2. maxi=max(maxi,sum)
3. if(sum<0) -> sum=0
}
return maxi
//solution
nums=[-2,1,-3,4,-1,2,1,-5,4]
class Solution {
public int maxSubArray(int[] nums) {
int sum=0;
int maxi=nums[0];
for(int i=0 ; i<nums.length ; i++){
sum+=nums[i];
maxi=Math.max(maxi,sum);
if(sum<0){
sum=0;
}
}
return maxi;
}
Upvotes: -1
Reputation: 2051
This is an o(nlogn) solution referred to https://www.quora.com/Given-an-array-of-integers-A-and-an-integer-k-find-a-subarray-that-contains-the-largest-sum-subject-to-a-constraint-that-the-sum-is-less-than-k
private int maxSumSubArray(int[] a , int k){
int max = Integer.MIN_VALUE;
int sumj = 0;
TreeSet<Integer> ts = new TreeSet();
ts.add(0);
for(int i=0;i<a.length;i++){
sumj += a[i];
if (sumj == k) return k;
Integer gap = ts.ceiling(sumj - k);
if(gap != null) max = Math.max(max, sumj - gap);
ts.add(sumj);
}
return max;
}
Upvotes: 14
Reputation: 1
Can be solved using simple sliding window. First keep adding sum of array elements and if sum exceeds k decrease it by subtracting elements from start. This works only if array has non-negative numbers.
int curr_sum = arr[0], max_sum = 0, start = 0;
// To find max_sum less than sum
for (int i = 1; i < n; i++) {
// Update max_sum if it becomes
// greater than curr_sum
if (curr_sum <= sum)
max_sum = max(max_sum, curr_sum);
// If curr_sum becomes greater than
// sum subtract starting elements of array
while (curr_sum + arr[i] > sum && start < i) {
curr_sum -= arr[start];
start++;
}
// Add elements to curr_sum
curr_sum += arr[i];
}
// Adding an extra check for last subarray
if (curr_sum <= sum)
max_sum = max(max_sum, curr_sum);
return max_sum;
Upvotes: 0
Reputation: 1
Wonder why no one's discussing the Sliding Window based Solution for this( O(n) ).
Note -> 'sum' in above algo is the sum of elements in current window.
int findMaxSubarraySum(long long arr[], int N, long long K)
{
long long currSum = arr[0];
long long maxSum = LLONG_MIN;
int startIndex = 0;
if(currSum <= X) maxSum = currSum;
for(int i=1; i<N; i++){
currSum += arr[i];
while(currSum > K && startIndex <= i){
currSum -= arr[startIndex];
startIndex++;
}
if(currSum <= K) maxSum = max(maxSum, currSum);
}
return (int)maxSum;
}
Upvotes: 0
Reputation: 67
Here's one in python O(n^2):
def maxsubfunc(arr, k):
s = 0
maxsofar = -1
for i,n in enumerate(arr):
s += n
if s <= k:
maxsofar = max(maxsofar, s)
else:
maxnow = s
for j in range(i):
maxnow -= arr[j]
if maxnow < k:
maxsofar = max(maxnow, maxsofar)
return maxsofar
Upvotes: 0
Reputation: 2051
I was influenced by the classic solution mentioned in the question. This problem can be simply solved by an o(n^2) solution:
private int maxSumSubArray(int[] a , int k){
int max = Integer.MIN_VALUE;
for(int i=0;i<a.length;i++){
int tsum = 0;
for(int j=i;j<a.length;j++){
tsum += a[j];
if(tsum <= k) max=Math.max(max,tsum);
}
}
return max;
}
Upvotes: 1
Reputation: 13269
Here's a naive algorithm that runs in O(n²).
std::array<int, 3> input = {2, 2, -1};
int k = -1;
int sum = 0, largestSum = *std::min_element(input.begin(), input.end()) -1;
int i = 0, j = 0;
int start = 0, end = 0;
while (largestSum != k && i != input.size()) {
sum += input[j];
if (sum <= k && sum > largestSum) {
largestSum = sum;
start = i;
end = j;
}
++j;
if (j == input.size()) {
++i;
j = i;
sum = 0;
}
}
That's C++ but it shouldn't be hard to write in Java or Javascript.
It basically tries every sum possible (there are n*(n+1)/2
) and stops if it finds k.
largestSum
must be initialized to a low-enough value. Since the minimum element of the input could equal k, I subtracted 1 to it.
start
and end
are the first and last indices of the final subarray.
Of course, it could be improved if you had any constraints on the inputs.
Upvotes: 0