Reputation: 3713
Given the following data frame:
import pandas as pd
import numpy as np
df1=pd.DataFrame({'A':['a','b','c','d'],
'B':['d',np.nan,'c','f']})
df1
A B
0 a d
1 b NaN
2 c c
3 d f
I'd like to insert blank rows before each row. The desired result is:
A B
0 NaN NaN
1 a d
2 NaN NaN
3 b NaN
4 NaN NaN
5 c c
6 NaN NaN
7 d f
In reality, I have many rows.
Thanks in advance!
Upvotes: 6
Views: 4964
Reputation: 294278
Use numpy and pd.DataFrame
def pir(df):
nans = np.where(np.empty_like(df.values), np.nan, np.nan)
data = np.hstack([nans, df.values]).reshape(-1, df.shape[1])
return pd.DataFrame(data, columns=df.columns)
pir(df1)
Code
def banana(df):
df1 = df.set_index(np.arange(1, 2*len(df)+1, 2))
df2 = pd.DataFrame(index=range(0, 2*len(df1), 2), columns=df1.columns)
return pd.concat([df1, df2]).sort_index()
def anton(df):
df = df.set_index(np.arange(1, 2*len(df)+1, 2))
return df.reindex(index=range(2*len(df)))
def pir(df):
nans = np.where(np.empty_like(df.values), np.nan, np.nan)
data = np.hstack([nans, df.values]).reshape(-1, df.shape[1])
return pd.DataFrame(data, columns=df.columns)
Results
pd.concat([f(df1) for f in [banana, anton, pir]],
axis=1, keys=['banana', 'anton', 'pir'])
Timing
Upvotes: 3
Reputation: 31672
I think you could change your index like @bananafish did and then use reindex
:
df1.index = range(1, 2*len(df1)+1, 2)
df2 = df1.reindex(index=range(2*len(df1)))
In [29]: df2
Out[29]:
A B
0 NaN NaN
1 a d
2 NaN NaN
3 b NaN
4 NaN NaN
5 c c
6 NaN NaN
7 d f
Upvotes: 7
Reputation: 2917
A bit roundabout but this works:
df1.index = range(1, 2*len(df1)+1, 2)
df2 = pd.DataFrame(index=range(0, 2*len(df1), 2), columns=df1.columns)
df3 = pd.concat([df1, df2]).sort()
Upvotes: 2