Reputation: 1017
I have two parts of code that I want to run in a loop. Sometimes I need to make the loop 'sleep', making each iteration skip the second part. The loop should stop sleeping after a set amount of time (for example using a thread with a call to thread::sleep
). How do I accomplish this?
use std::thread;
let mut sleeping = false;
let mut handle = thread::spawn(|| {});
loop {
part_1();
if sleeping {
continue;
}
part_2();
if some_condition {
sleeping = true;
handle = thread::spawn(|| thread::sleep_ms(100));
}
}
In this example, if the condition is met, the part_2
call would be skipped for some amount of iterations. My use case is continuing to run graphical updates in a game, while freezing the game's logic (such as counting down timers).
Upvotes: 1
Views: 201
Reputation: 430524
There is no need for the overhead of threads or even the need to sleep. Simply track the time that you should delay executing code until:
use std::time::{Duration, Instant};
fn part_1() {}
fn part_2() {}
fn some_condition() -> bool {
false
}
fn main() {
let mut sleep_until = None;
loop {
part_1();
if let Some(until) = sleep_until {
if until > Instant::now() {
continue;
}
}
part_2();
if some_condition() {
let now = Instant::now();
let until = now + Duration::from_millis(500);
sleep_until = Some(until);
}
}
}
Although I'd probably avoid the use of continue
here, and instead embed the logic within:
use std::time::{Duration, Instant};
fn perform_physics_calculation() {}
fn perform_graphics_render() {}
fn main() {
let mut next_graphics_update = Instant::now();
let graphics_delay = Duration::from_millis(500);
loop {
let now = Instant::now();
perform_physics_calculation();
if next_graphics_update <= now {
perform_graphics_render();
next_graphics_update = now + graphics_delay;
}
}
}
Note in one case I use an Option<Instant>
and in the other I just use an Instant
; both cases can make sense.
Upvotes: 2
Reputation: 65692
Turn your sleeping
variable into a reference-counted atomic boolean so that you can reset it on the sleeping thread.
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, Ordering};
use std::thread;
use std::time::Duration;
fn part_1() {}
fn part_2() {}
fn some_condition() -> bool { false }
fn main() {
let sleeping = Arc::new(AtomicBool::new(false));
let mut handle = None;
loop {
part_1();
if sleeping.load(Ordering::Acquire) {
continue;
}
part_2();
if some_condition() {
sleeping.store(true, Ordering::Release);
let sleeping_clone = sleeping.clone();
handle = Some(thread::spawn(move || {
thread::sleep(Duration::from_millis(100));
sleeping_clone.store(false, Ordering::Release);
}));
}
}
}
Upvotes: 1