Reputation: 83
I have an image and a mask. Both are numpy array. I get the mask through GraphSegmentation (cv2.ximgproc.segmentation), so the area isn't rectangle, but not divided. I'd like to get a rectangle just the size of masked area, but I don't know the efficient way.
In other words, unmasked pixels are value of 0 and masked pixels are value over 0, so I want to get a rectangle where...
My code is below
segmentation = cv2.ximgproc.segmentation.createGraphSegmentation()
src = cv2.imread('image_file')
segment = segmentation.processImage(src)
for i in range(np.max(segment)):
dst = np.array(src)
dst[segment != i] = 0
cv2.imwrite('output_file', dst)
Upvotes: 8
Views: 12069
Reputation: 4261
I think using np.amax
and np.amin
and cropping the image is much faster.
i, j = np.where(mask)
indices = np.meshgrid(np.arange(min(i), max(i) + 1),
np.arange(min(j), max(j) + 1),
indexing='ij')
sub_image = image[indices]
Time taken: 50 msec
where = np.array(np.where(mask))
x1, y1 = np.amin(where, axis=1)
x2, y2 = np.amax(where, axis=1)
sub_image = image[x1:(x2+1), y1:(y2+1)]
Time taken: 5.6 msec
Upvotes: 5
Reputation: 845
I don't get Hans's results when running the two methods (using NumPy 1.18.5). In any case, there is a much more efficient method, where you take the arg-max along each dimension
i, j = np.where(mask)
y, x = np.meshgrid(
np.arange(min(i), max(i) + 1),
np.arange(min(j), max(j) + 1),
indexing="ij",
)
Took 38 ms
where = np.array(np.where(mask))
y1, x1 = np.amin(where, axis=1)
y2, x2 = np.amax(where, axis=1) + 1
sub_image = image[y1:y2, x1:x2]
Took 35 ms
maskx = np.any(mask, axis=0)
masky = np.any(mask, axis=1)
x1 = np.argmax(maskx)
y1 = np.argmax(masky)
x2 = len(maskx) - np.argmax(maskx[::-1])
y2 = len(masky) - np.argmax(masky[::-1])
sub_image = image[y1:y2, x1:x2]
Took 2 ms
Upvotes: 5
Reputation: 33358
If you prefer pure Numpy, you can achieve this using np.where
and np.meshgrid
:
i, j = np.where(mask)
indices = np.meshgrid(np.arange(min(i), max(i) + 1),
np.arange(min(j), max(j) + 1),
indexing='ij')
sub_image = image[indices]
np.where
returns a tuple of arrays specifying, pairwise, the indices in each axis for each non-zero element of mask
. We then create arrays of all the row and column indices we will want using np.arange
, and use np.meshgrid
to generate two grid-shaped arrays that index the part of the image we're interested in. Note that we specify matrix-style indexing using index='ij'
to avoid having to transpose the result (the default is Cartesian-style indexing).
Essentially, meshgrid
constructs indices
so that:
image[indices][a, b] == image[indices[0][a, b], indices[1][a, b]]
Start with the following:
>>> image = np.arange(12).reshape((4, 3))
>>> image
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]])
Let's say we want to extract the [[3,4],[6,7]]
sub-matrix, which is the bounding rectangle for the the following mask:
>>> mask = np.array([[0,0,0],[0,1,0],[1,0,0],[0,0,0]])
>>> mask
array([[0, 0, 0],
[0, 1, 0],
[1, 0, 0],
[0, 0, 0]])
Then, applying the above method:
>>> i, j = np.where(mask)
>>> indices = np.meshgrid(np.arange(min(i), max(i) + 1), np.arange(min(j), max(j) + 1), indexing='ij')
>>> image[indices]
array([[3, 4],
[6, 7]])
Here, indices[0]
is a matrix of row indices, while indices[1]
is the corresponding matrix of column indices:
>>> indices[0]
array([[1, 1],
[2, 2]])
>>> indices[1]
array([[0, 1],
[0, 1]])
Upvotes: 8