Reputation: 53
I have two threads doing calculation on a common variable "n", one thread increase "n" each time, another decrease "n" each time, when I am not using volatile keyword on this variable, something I cannot understand happens, sb there please help explain, the snippet is like follow:
public class TwoThreads {
private static int n = 0;
private static int called = 0;
public static void main(String[] args) {
for (int i = 0; i < 1000; i++) {
n = 0;
called = 0;
TwoThreads two = new TwoThreads();
Inc inc = two.new Inc();
Dec dec = two.new Dec();
Thread t = new Thread(inc);
t.start();
t = new Thread(dec);
t.start();
while (called != 2) {
//System.out.println("----");
}
System.out.println(n);
}
}
private synchronized void inc() {
n++;
called++;
}
private synchronized void dec() {
n--;
called++;
}
class Inc implements Runnable {
@Override
public void run() {
inc();
}
}
class Dec implements Runnable {
@Override
public void run() {
dec();
}
}
}
1) What I am expecting is "n=0,called=2" after execution, but chances are the main thread can be blocked in the while loop;
2) But when I uncomment this line, the program when as expected:
//System.out.println("----");
3) I know I should use "volatile" on "called", but I cannot explain why the above happens;
4) "called" is "read and load" in working memory of specific thread, but why it's not "store and write" back into main thread after "long" while loop, if it's not, why a simple "print" line can make such a difference
Upvotes: 0
Views: 4338
Reputation: 20436
You need to synchronize access to called
here:
while (called != 2) {
//System.out.println("----");
}
I sugest to add getCalled
method
private synchronized int getCalled() {
return called;
}
and replace called != 2
with getCalled() != 2
If you interested in why this problem occure you can read about visibility in context of java memory model.
Upvotes: 0
Reputation: 3336
You don't know where exactly called++ will be executed, your main thread will continue to born new threads which will make mutual exclusion, I mean only one thread can make called++ in each time because methods are synchronized, and you don't know each exactly thread will be it. May be two times will performed n++ or n--, you don't know this, may be ten times will performed n++ while main thread reach your condition.
and try to read about data race
while (called != 2) {
//System.out.println("----");
}
//.. place for data race, n can be changed
System.out.println(n);
Upvotes: 0
Reputation: 4956
You have synchronized writing of data (in inc and dec), but not reading of data (in main). BOTH should be synchronized to get predictable effects. Otherwise, chances are that main never "sees" the changes done by inc and dec.
Upvotes: 2