Reputation: 23
My data set contains several categorical variables that I would like visualise to see the distribution.
For example, if I wanted to visualise the 4 variables (manufacturer, trans, fl, class) in the mpg data set in ggplot2, I have to write 4 lines of code:
ggplot(mpg, aes(manufacturer)) + geom_bar() + coord_flip()
ggplot(mpg, aes(trans)) + geom_bar() + coord_flip()
ggplot(mpg, aes(fl)) + geom_bar() + coord_flip()
ggplot(mpg, aes(class)) + geom_bar() + coord_flip()
Resulting barplot:
How can I write a code to do this more efficiently? loop? apply function? I would like to see each chart one at a time, if possible.
Upvotes: 2
Views: 8039
Reputation: 1751
Your idea to use lapply
is one solution.
This requires aes_string
to be used instead aes
.
Single plots
This creates single plots per column (name) you supply as first argument to lapply
:
lapply(c("manufacturer", "trans", "fl", "class"),
function(col) {
ggplot(mpg, aes_string(col)) + geom_bar() + coord_flip()
})
Combined plots
If you require all plots on one plotting area, you can use miscset::ggplotGrid
:
library(miscset) # install from CRAN if required
ggplotGrid(ncol = 2,
lapply(c("manufacturer", "trans", "fl", "class"),
function(col) {
ggplot(mpg, aes_string(col)) + geom_bar() + coord_flip()
}))
The result looks like:
Upvotes: 3