Reputation: 2677
I've a Dataframe in this format:
| Department | Person | Power | ... |
|------------|--------|--------|-----|
| ABC | 1234 | 75 | ... |
| ABC | 1235 | 25 | ... |
| DEF | 1236 | 50 | ... |
| DEF | 1237 | 100 | ... |
| DEF | 1238 | 25 | ... |
| DEF | 1239 | 50 | ... |
What I now want to get is the sum of occurrences for each value in the power column. How can I get this from my DataFrame?
| Department | 100 | 75 | 50 | 25 |
|------------|-----|-----|-----|-----|
| ABC | 0 | 1 | 0 | 1 |
| DEF | 1 | 0 | 2 | 1 |
Upvotes: 3
Views: 3192
Reputation: 862751
You can use value_counts
with sort_index
, then generate DataFrame
by to_frame
and last transpose by T
:
print (df.Power.value_counts().sort_index(ascending=False).to_frame().T)
100 75 50 25
Power 1 1 2 2
EDIT by comment:
You need crosstab
:
print (pd.crosstab(df.Department, df.Power).sort_index(axis=1, ascending=False))
Power 100 75 50 25
Department
ABC 0 1 0 1
DEF 1 0 2 1
Faster another solution with groupby
and unstack
:
print (df.groupby(['Department','Power'])
.size()
.unstack(fill_value=0)
.sort_index(axis=1, ascending=False))
Power 100 75 50 25
Department
ABC 0 1 0 1
DEF 1 0 2 1
If need groupby
by columns Department
and Person
, add column Person
to groupby
to second position (thank you piRSquared):
print (df.groupby(['Department','Person', 'Power'])
.size()
.unstack(fill_value=0)
.sort_index(axis=1, ascending=False))
Power 100 75 50 25
Department Person
ABC 1234 0 1 0 0
1235 0 0 0 1
DEF 1236 0 0 1 0
1237 1 0 0 0
1238 0 0 0 1
1239 0 0 1 0
EDIT1 by comment:
If need add another missing values, use reindex
:
print (df.groupby(['Department','Power'])
.size()
.unstack(fill_value=0)
.reindex(columns=[100,75,50,25,0], fill_value=0))
Power 100 75 50 25 0
Department
ABC 0 1 0 1 0
DEF 1 0 2 1 0
Upvotes: 4
Reputation: 966
or it can be done this way:
>>> df.groupby(['Department','Power']).count().unstack().fillna(0)
Person
Power 25 50 75 100
Department
ABC 1.0 0.0 1.0 0.0
DEF 1.0 2.0 0.0 1.0
Upvotes: 1