Reputation: 2575
I have a very simple csv, with the following data, compressed inside the tar.gz file. I need to read that in dataframe using pandas.read_csv.
A B
0 1 4
1 2 5
2 3 6
import pandas as pd
pd.read_csv("sample.tar.gz",compression='gzip')
However, I am getting error:
CParserError: Error tokenizing data. C error: Expected 1 fields in line 440, saw 2
Following are the set of read_csv commands and the different errors I get with them:
pd.read_csv("sample.tar.gz",compression='gzip', engine='python')
Error: line contains NULL byte
pd.read_csv("sample.tar.gz",compression='gzip', header=0)
CParserError: Error tokenizing data. C error: Expected 1 fields in line 440, saw 2
pd.read_csv("sample.tar.gz",compression='gzip', header=0, sep=" ")
CParserError: Error tokenizing data. C error: Expected 2 fields in line 94, saw 14
pd.read_csv("sample.tar.gz",compression='gzip', header=0, sep=" ", engine='python')
Error: line contains NULL byte
What's going wrong here? How can I fix this?
Upvotes: 54
Views: 116873
Reputation: 4713
You can use the tarfile
module to read a particular file from the tar.gz archive (as discussed in this resolved issue).
If there is only one file in the archive, then you can do this:
import tarfile
import pandas as pd
with tarfile.open("sample.tar.gz", "r:*") as tar:
csv_path = tar.getnames()[0]
df = pd.read_csv(tar.extractfile(csv_path), header=0, sep=" ")
The read mode r:*
handles the gz extension (or other kinds of compression) appropriately. If there are multiple files in the zipped tar file, then you could do something like csv_path = list(n for n in tar.getnames() if n.endswith('.csv'))[-1]
line to get the last csv file in the archived folder.
Upvotes: 15
Reputation: 12465
df = pd.read_csv('sample.tar.gz', compression='gzip', header=0, sep=' ', quotechar='"', error_bad_lines=False)
Note: error_bad_lines=False
will ignore the offending rows.
Upvotes: 88