Reputation: 73376
As I live in agony for Is Spark's KMeans unable to handle bigdata?, I want to create a minimal example to demonstrate the drama. For that, I want to create the data, rather than read it.
Here is what my data looks like:
In [22]: realData.take(2)
Out[22]:
[array([ 84.35778894, 190.61634731, 121.61911155, -42.2862512 ,
-39.33345881, 56.73534546, -15.59698061, -86.12075349,
85.48406906, 40.84118662, -1.00725942, -2.87201027,
-78.0677815 , -18.80891205, -92.39391945, -102.98860959,
-10.59249313, 30.80641523, 87.49634549, -78.3205944 ,
-15.99765437, 33.36382612, -14.10079251, 37.05977621,
-30.02787349, -46.48908886, 40.05820543, 12.34164613,
60.59778037, 32.86144792, -75.09426566, -29.71363055,
-24.45698228, -7.22987835, 35.51963431, 36.92236462,
84.71522683, -30.15837915, 1.30921589, 29.79845728,
7.77733962, 28.66041905, 6.55247136, 45.48181712,
-24.81799125, 12.20440078, -14.91224658, -36.80905193,
51.17004102, -18.4527695 , 12.35095124, -3.73548334,
-9.2651481 , 19.53993158, -0.28221419, 33.07089884,
7.89205558, -2.63194072, 13.32103665, 7.62146851,
-41.3406389 , 13.37658853, -36.09437786, -18.15283789]),
array([ 227.63800054, 89.63235623, -28.94679686, -171.95442583,
-157.36636545, -43.28729374, 97.31828944, -45.66335323,
-100.52371276, 16.04201854, 25.79787405, -43.55558296,
-23.43046377, -53.12619721, -10.16698475, -88.88129402,
77.19121455, 28.42062289, -0.30305782, -56.16625533,
-100.88774848, 38.65317047, 37.17211943, 38.16609239,
-50.05152587, -8.73759989, -49.98339921, -21.65102389,
13.39011805, 48.91359669, -22.98882211, -39.78551088,
-52.06830607, 44.4193014 , -30.76970509, -109.19968443,
-67.17202321, -38.17445022, -66.15981665, -12.53127828,
-29.50283995, -72.71269849, -85.92771623, 62.37326985,
-25.44451665, 30.67529111, 19.77880449, 24.68152321,
-62.80451881, 60.57287154, 22.31731031, 37.22992347,
41.42355257, -50.73447099, -9.21878036, -18.39200695,
-11.15764727, 44.76715383, -16.37372336, -4.55888474,
-4.26690754, 23.23691627, 0.25348381, -37.4707463 ])]
It seems to be a list of arrays.
How to create this kind of data, with importing as less packages as possible?
Note: every element of the RDD is 64 dimensional vector. I plan to create 100m vectors.
Random values are also welcomed (for example within [-100, 100], I don't really care).
Upvotes: 1
Views: 443
Reputation: 330193
Spark provides utilities for generating random RDDs out-of-the box. In PySpark these are located in pyspark.mllib.random.RandomRDDs
. For example:
from pyspark.mllib.random import RandomRDDs
rdd = RandomRDDs.uniformVectorRDD(sc, 100000000, 64)
type(rdd.first())
## numpy.ndarray
rdd.first().shape
# (64,)
Upvotes: 3