Reputation: 21223
I have a dataframe df with two columns customer1
and customer2
which are string valued. I would like to make a square graphical representation of the count number for each pair from those two columns.
I can do
df[['customer1', 'customer2']].value_counts()
which will give me the counts. But how can I make something that looks a little like:
from the result?
I can't provide my real dataset but here is a toy example with three labels in csv.
customer1,customer2
a,b
a,c
a,c
b,a
b,c
b,c
c,c
a,a
b,c
b,c
Upvotes: 3
Views: 1341
Reputation: 210832
UPDATE:
Is it possible to sort the rows/columns so the highest count rows are at the top ? In this case the order would be b,a,c
IIUC you can do it this way (where ):
In [80]: x = df.pivot_table(index='customer1',columns='customer2',aggfunc='size',fill_value=0)
In [81]: idx = x.max(axis=1).sort_values(ascending=0).index
In [82]: idx
Out[82]: Index(['b', 'a', 'c'], dtype='object', name='customer1')
In [87]: sns.heatmap(x[idx].reindex(idx), annot=True)
Out[87]: <matplotlib.axes._subplots.AxesSubplot at 0x9ee3f98>
OLD answer:
you can use heatmap() method from seaborn
module:
In [42]: import seaborn as sns
In [43]: df
Out[43]:
customer1 customer2
0 a b
1 a c
2 a c
3 b a
4 b c
5 b c
6 c c
7 a a
8 b c
9 b c
In [44]: x = df.pivot_table(index='customer1',columns='customer2',aggfunc='size',fill_value=0)
In [45]: x
Out[45]:
customer2 a b c
customer1
a 1 1 2
b 1 0 4
c 0 0 1
In [46]: sns.heatmap(x)
Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0xb150b70>
or with annotations:
In [48]: sns.heatmap(x, annot=True)
Out[48]: <matplotlib.axes._subplots.AxesSubplot at 0xc596d68>
Upvotes: 2
Reputation: 2723
As @MaxU mentioned, seaborn.heatmap
should work. It appears that you can use the Pandas DataFrame as the input.
seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, square=False, ax=None, xticklabels=True, yticklabels=True, mask=None, **kwargs)
https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.heatmap.html#seaborn.heatmap
Upvotes: 0