Reputation: 155
I'd like split a big parquet file into multiple parquet files in different folder in HDFS, so that I can build partitioned table (whatever Hive/Drill/Spark SQL) on it.
Data example:
+-----+------+
|model| num1|
+-----+------+
| V80| 195.0|
| V80| 750.0|
| V80| 101.0|
| V80| 0.0|
| V80| 0.0|
| V80| 720.0|
| V80|1360.0|
| V80| 162.0|
| V80| 150.0|
| V90| 450.0|
| V90| 189.0|
| V90| 400.0|
| V90| 120.0|
| V90| 20.3|
| V90| 0.0|
| V90| 84.0|
| V90| 555.0|
| V90| 0.0|
| V90| 9.0|
| V90| 75.6|
+-----+------+
The result folder structure should be grouped by "model" field:
+
|
+-----model=V80
| |
| +----- XXX.parquet
+-----model=V90
| |
| +----- XXX.parquet
I tried the script like this:
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
case class Infos(name:String, name1:String)
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val rdd = sqlContext.read.load("hdfs://nameservice1/user/hive/warehouse/a_e550_parquet").select("model", "num1").limit(10000)
val tmpRDD = rdd.map { item => (item(0), Infos(item.getString(0), item.getString(1))) }.groupByKey()
for (item <- tmpRDD) {
import sqlContext.implicits._
val df = item._2.toSeq.toDF()
df.write.mode(SaveMode.Overwrite).parquet("hdfs://nameservice1/tmp/model=" + item._1)
}
}
Just threw out a null point exception.
Upvotes: 4
Views: 13128
Reputation: 1751
You should use partitionBy from DataFrame. You do not need groupBy. Something like below should give what you want.
val df = sqlContext.read.parquet("hdfs://nameservice1/user/hive/warehouse/a_e550_parquet").select("model", "num1").limit(10000)
df.write.partitionBy("model").mode(SaveMode.Overwrite)
Upvotes: 5