Reputation: 191
I have a column with time stamps (that are classed as factors at the moment), that I'd like to extract from. There are about 220,000 rows and about half contain factors as "%d.%m.%Y %H:%M:%S" and the other half, "%d.%m.%Y %H:%M". So about half have three more charters than the other half.
I'd like to extract from each row the, %d.%m.%Y %H:%M", leaving out the :%S from those that contain it.
Since they're classed as factors, my assumption is that they could be extracted by order, i.e. extract 1st - 14th charcter.
This is what the data looks like.
Start.Timestamp
01.01.2015 12:32
01.01.2015 08:22
01.01.2015 14:10
31.12.2014 21:43
01.01.2015 00:21
01.01.2015 12:38
01.01.2015 01:00
01.01.2015 14:13
01.01.2016 04:11:34
01.01.2016 10:13:30
01.01.2016 04:30:08
01.01.2016 08:49:40
01.01.2016 07:44:45
Also - all ":00" to those factors strings missing the "%S" would be acceptable.
I hope this is clear.
Thank you all in advance
Upvotes: 0
Views: 983
Reputation: 13274
Given that you have a factor column, I would recommend converting it to a vector of characters and using both strptime()
and strftime()
to get the desired output in a datetime format:
your_df <- structure(list(Start.Timestamp = structure(c(4L, 3L, 6L, 13L,
1L, 5L, 2L, 7L, 8L, 12L, 9L, 11L, 10L), .Label = c("01.01.2015 00:21",
"01.01.2015 01:00", "01.01.2015 08:22", "01.01.2015 12:32", "01.01.2015 12:38",
"01.01.2015 14:10", "01.01.2015 14:13", "01.01.2016 04:11:34",
"01.01.2016 04:30:08", "01.01.2016 07:44:45", "01.01.2016 08:49:40",
"01.01.2016 10:13:30", "31.12.2014 21:43"), class = "factor")), .Names = "Start.Timestamp", class = "data.frame", row.names = c(NA,
-13L))
strftime(strptime(as.character(your_df$Start.Timestamp), format = "%d.%m.%Y %H:%M"), "%d.%m.%Y %H:%M")
[1] "01.01.2015 12:32" "01.01.2015 08:22" "01.01.2015 14:10" "31.12.2014 21:43" "01.01.2015 00:21"
[6] "01.01.2015 12:38" "01.01.2015 01:00" "01.01.2015 14:13" "01.01.2016 04:11" "01.01.2016 10:13"
[11] "01.01.2016 04:30" "01.01.2016 08:49" "01.01.2016 07:44"
Upvotes: 1
Reputation: 23808
We can use lubridate's dmy_hms()
function with the option truncated = 1
to generate a POSIXct object. This option is helpful when the time data has incomplete entries, like missing seconds in this case (which are then set to 00).
The output of dmy_hms()
can then be wrapped into format()
to obtain the desired form:
format(lubridate::dmy_hms(df1$Start.Timestamp, truncated = 1),"%d.%m.%Y %H:%M")
# [1] "01.01.2015 12:32" "01.01.2015 08:22" "01.01.2015 14:10" "31.12.2014 21:43"
# [5] "01.01.2015 00:21" "01.01.2015 12:38" "01.01.2015 01:00" "01.01.2015 14:13"
# [9] "01.01.2016 04:11" "01.01.2016 10:13" "01.01.2016 04:30" "01.01.2016 08:49"
#[13] "01.01.2016 07:44"
data
df1 <- structure(list(Start.Timestamp = structure(c(4L, 3L, 6L, 13L,
1L, 5L, 2L, 7L, 8L, 12L, 9L, 11L, 10L), .Label = c("01.01.2015 00:21",
"01.01.2015 01:00", "01.01.2015 08:22", "01.01.2015 12:32", "01.01.2015 12:38",
"01.01.2015 14:10", "01.01.2015 14:13", "01.01.2016 04:11:34",
"01.01.2016 04:30:08", "01.01.2016 07:44:45", "01.01.2016 08:49:40",
"01.01.2016 10:13:30", "31.12.2014 21:43"), class = "factor")),
.Names = "Start.Timestamp", class = "data.frame", row.names = c(NA, -13L))
Upvotes: 1
Reputation: 7063
It depends on the given format (dput a sample of your data). One possibility was
> str <- c("01.01.2016 07:44", "01.01.2016 07:45")
> substr(str, 1,16)
[1] "01.01.2016 07:44" "01.01.2016 07:45"
if truncation is ok.
Upvotes: 0
Reputation: 301
Depending on what your initial data is, something like:
lapply(df,substring, first=1, last=16)
could maybe help.
When your data is like this:
df <- data.frame("Start.Timestamp",
"01.01.2015 12:32",
"01.01.2015 08:22",
"01.01.2015 14:10",
"31.12.2014 21:43",
"01.01.2015 00:21",
"01.01.2015 12:38",
"01.01.2015 01:00",
"01.01.2015 14:13",
"01.01.2016 04:11:34",
"01.01.2016 10:13:30",
"01.01.2016 04:30:08",
"01.01.2016 08:49:40",
"01.01.2016 07:44:45")
lapply(df,substring, first=1, last=16)
#$X.Start.Timestamp.
#[1] "Start.Timestamp"
#$X.01.01.2015.12.32.
#[1] "01.01.2015 12:32"
#$X.01.01.2015.08.22.
#[1] "01.01.2015 08:22"
#$X.01.01.2015.14.10.
#[1] "01.01.2015 14:10"
#$X.31.12.2014.21.43.
#[1] "31.12.2014 21:43"
...
Or any other of the apply functions, as I do not know how your whole data is set up.
Upvotes: 1