Reputation: 121
I'm trying to implement sentence similarity architecture based on this work using the STS dataset. Labels are normalized similarity scores from 0 to 1 so it is assumed to be a regression model.
My problem is that the loss goes directly to NaN
starting from the first epoch. What am I doing wrong?
I have already tried updating to latest keras and theano versions.
The code for my model is:
def create_lstm_nn(input_dim):
seq = Sequential()`
# embedd using pretrained 300d embedding
seq.add(Embedding(vocab_size, emb_dim, mask_zero=True, weights=[embedding_weights]))
# encode via LSTM
seq.add(LSTM(128))
seq.add(Dropout(0.3))
return seq
lstm_nn = create_lstm_nn(input_dim)
input_a = Input(shape=(input_dim,))
input_b = Input(shape=(input_dim,))
processed_a = lstm_nn(input_a)
processed_b = lstm_nn(input_b)
cos_distance = merge([processed_a, processed_b], mode='cos', dot_axes=1)
cos_distance = Reshape((1,))(cos_distance)
distance = Lambda(lambda x: 1-x)(cos_distance)
model = Model(input=[input_a, input_b], output=distance)
# train
rms = RMSprop()
model.compile(loss='mse', optimizer=rms)
model.fit([X1, X2], y, validation_split=0.3, batch_size=128, nb_epoch=20)
I also tried using a simple Lambda
instead of the Merge
layer, but it has the same result.
def cosine_distance(vests):
x, y = vests
x = K.l2_normalize(x, axis=-1)
y = K.l2_normalize(y, axis=-1)
return -K.mean(x * y, axis=-1, keepdims=True)
def cos_dist_output_shape(shapes):
shape1, shape2 = shapes
return (shape1[0],1)
distance = Lambda(cosine_distance, output_shape=cos_dist_output_shape)([processed_a, processed_b])
Upvotes: 12
Views: 7146
Reputation: 12781
I didn't run into the nan
issue, but my loss wouldn't change. I found this info
check this out
def cosine_distance(shapes):
y_true, y_pred = shapes
def l2_normalize(x, axis):
norm = K.sqrt(K.sum(K.square(x), axis=axis, keepdims=True))
return K.sign(x) * K.maximum(K.abs(x), K.epsilon()) / K.maximum(norm, K.epsilon())
y_true = l2_normalize(y_true, axis=-1)
y_pred = l2_normalize(y_pred, axis=-1)
return K.mean(1 - K.sum((y_true * y_pred), axis=-1))
Upvotes: 0
Reputation: 591
The nan is a common issue in deep learning regression. Because you are using Siamese network, you can try followings:
It is not easy to make deep learning work perfectly.
Upvotes: 3