Reputation: 60421
The bit twiddling hacks website propose the following very efficient function to reverse bits:
// Bitswap: reverse the bits of the value of unsigned integral type T
template <class T>
constexpr T bitswap(T src)
{
constexpr std::size_t char_bit = std::numeric_limits<unsigned char>::digits;
constexpr std::size_t digits = sizeof(T) * char_bit;
std::size_t size = digits;
T mask = ~T();
while ((size >>= 1) > 0) {
mask ^= (mask << size);
src = ((src >> size) & mask) | ((src << size) & ~mask);
}
return src;
}
__uint128_t
? (the original version works with __uint128_t
)digits
is correctly initialized to the correct number of bits? (for example a hypotherical uint41_t
).Upvotes: 4
Views: 713
Reputation: 275740
This is a little utility function that lets you unpack parameter packs inline into a lambda in C++14:
template<class=void, std::size_t...Is>
constexpr auto indexer(std::index_sequence<Is...>) {
return [](auto&& f) {
using discard=int[];
(void)discard{0,(void(
f(std::integral_constant<std::size_t, Is>{})
),0)...};
};
}
template<std::size_t N>
constexpr auto indexer() {
return indexer( std::make_index_sequence<N>{} );
}
Next we need a compile time log function:
constexpr std::size_t ct_log_2( std::size_t N ) {
return (N>1)?1+ct_log_2(N>>1):0;
}
we then put these together:
template <class T>
constexpr T bitswap(T src)
{
constexpr std::size_t char_bit = std::numeric_limits<unsigned char>::digits;
static_assert(char_bit == 8);
constexpr std::size_t digits = sizeof(T) * char_bit;
T mask = ~T();
auto expand = indexer<ct_log_2(digits)>();
expand([&](auto i){
constexpr auto size = digits >> (i+1);
mask ^= (mask << size);
src = ((src >> size) & mask) | ((src << size) & ~mask);
});
return src;
}
Sadly this requires a C++17 feature of constexpr
lambdas. However the indexer work can be turned into a verbose manual implementation.
Create a constexpr size calculator:
template<std::size_t digits, std::size_t I>
constexpr auto size_calc = (digits >> (I+1));
Replace the expand
section with:
using discard=int[];
(void)discard{0,(void((
void( mask ^= (mask << size_calc<digits, Is>) ),
void( src = ( (src >> size_calc<digits, Is> ) & mask ) | ((src << size_calc<digits, Is>) & ~mask) ),
0
)),0)...};
where we have manually expanded what expand
does for us (isn't it ugly?), then have a one-argument version call:
return bitswap(src, std::make_index_sequence< ct_log_2(digits) >{} );
with the right index sequence.
The result should be equivalent.
Some compilers resist inlining deep recursive calls. The recursion depth here is 1 to 3 (to get the parameter pack growth). Now a naive recursive solution is only log_2(128) or 6, so this might be overkill.
Upvotes: 0
Reputation: 10880
You can't enforce rolling out templated calls, but chances are, this will end up in one single inlined function in an optimized build:
#include <iostream>
#include <limits>
#include <iomanip>
template <class T, int size = ((std::numeric_limits<unsigned char>::digits
* sizeof(T)) >> 1)>
struct Swap
{
static constexpr T bitswap(T src, T mask = ~T())
{
mask ^= (mask << size);
src = ((src >> size) & mask) | ((src << size) & ~mask);
return Swap<T, (size >> 1)>::bitswap(src, mask);
}
};
template <class T>
struct Swap<T, 0>
{
static constexpr T bitswap(T src, T mask)
{
return src;
}
};
template <class T>
constexpr T bitswap(T src)
{
return Swap<T>::bitswap(src);
}
int main() {
std::cout << std::hex << bitswap(0x12345678l);
}
Upvotes: 1