Reputation: 1391
Hey I have a ball that gets moved by a force-applied. What im trying to get it to do is basically have the causal effect of gravity acting upon it while its moving through the air to its destination. basically when the "move to" action is playing gravity does not take affect so instead of slowly falling down to the ground it instead moves to its final position then it just falls straight down when the "move to" action stops. do to the gravity in the scene.
Im trying to get the ball to be thrown in an arc and land on the target?
Code:
func CreateBall() {
let BallScene = SCNScene(named: "art.scnassets/Footballs.dae")
Ball = BallScene!.rootNode.childNodeWithName("Armature", recursively: true)! //the Amature/Bones
Ballbody = BallScene!.rootNode.childNodeWithName("Ball", recursively: true)!
let collisionCapsuleRadius3 = CGFloat(0.01) // Width of physicsBody
let collisionCapsuleHeight3 = CGFloat(0.01) // Height of physicsBody
Ball.position = SCNVector3Make(Guy.position.x, Guy.position.y, Guy.position.z)
Ball.scale = SCNVector3Make(5, 5, 5)
Ball.rotation = SCNVector4Make(0.0,0.0,0.0,0.0) // x,y,z,w
Ball.physicsBody = SCNPhysicsBody(type: .Dynamic, shape:SCNPhysicsShape(geometry: SCNCapsule(capRadius: collisionCapsuleRadius3, height: collisionCapsuleHeight3), options:nil))
Ball.physicsBody?.affectedByGravity = true
Ball.physicsBody?.friction = 1 //
Ball.physicsBody?.restitution = 0 //bounceness of the object. 1.0 will boounce forever
Ball.physicsBody?.angularDamping = 1 // ability to rotate
Ball.physicsBody?.mass = 1
Ball.physicsBody?.rollingFriction = 1
Ball.physicsBody!.categoryBitMask = BitmaskCollision4
Ball.physicsBody?.contactTestBitMask = BitmaskCollision3 //| BitmaskCollision2
Ballbody.physicsBody?.collisionBitMask = BitmaskCollision2 | BitmaskCollision3 | BitmaskCollision//| BitmaskCollision2
scnView.scene!.rootNode.addChildNode(Ball)
scnView.scene!.rootNode.addChildNode(Ballbody)
}
CreateBall()
now this is where the magic happens:
scnView.scene!.physicsWorld.gravity = SCNVector3(x: 0, y: -9.8, z: 0)
let location = SCNVector3(Guy2.presentationNode.position.x, 0.0, Guy2.presentationNode.position.z + Float(50) )
let moveAction = SCNAction.moveTo(location, duration: 2.0)
Ball.runAction(SCNAction.sequence([moveAction]))
let forceApplyed = SCNVector3(x: 0.0, y: 100.0 , z: 0.0)
Ball.physicsBody?.applyForce(forceApplyed, atPosition: Ball.presentationNode.position, impulse: true)
Upvotes: 1
Views: 1737
Reputation: 4836
Combining SCNActions and physics doesn't work, you need to use one or the other. Using physics you can calculate the exact force needed to propel your node to a target.
I have adapted a solution for Unity found here and utilised an SCNVector3 extension that makes some of the calculations much easier.
Basically you pass in an SCNNode
that you want to throw, an SCNVector3
for the target and an angle
(in radians) that you want the node to be thrown at. This function will then work out the force required to reach the target.
func shootProjectile() {
let velocity = ballisticVelocity(ball, target: target.position, angle: Float(0.4))
ball.physicsBody?.applyForce(velocity, impulse: true)
}
func ballisticVelocity(projectile:SCNNode, target: SCNVector3, angle: Float) -> SCNVector3 {
let origin = projectile.presentationNode.position
var dir = target - origin // get target direction
let h = dir.y // get height difference
dir.y = 0 // retain only the horizontal direction
var dist = dir.length() // get horizontal distance
dir.y = dist * tan(angle) // set dir to the elevation angle
dist += h / tan(angle) // correct for small height differences
// calculate the velocity magnitude
let vel = sqrt(dist * -scene.physicsWorld.gravity.y / sin(2 * angle))
return dir.normalized() * vel * Float(projectile.physicsBody!.mass)
}
It is also important to set the damping
of the physicsBody to 0, otherwise it will be affected by air resistance.
I’m not going to pretend to know exactly how this works, but Wikipedia has articles that explain all the maths behind it.
UPDATE
Since using the code above I've noticed it doesn't always work, especially when the heights of the origin and target are different. From the same forum this function seems more reliable.
func calculateBestThrowSpeed(origin: SCNVector3, target: SCNVector3, timeToTarget:Float) -> SCNVector3 {
let gravity:SCNVector3 = sceneView.scene!.physicsWorld.gravity
let toTarget = target - origin
var toTargetXZ = toTarget
toTargetXZ.y = 0
let y = toTarget.y
let xz = toTargetXZ.length()
let t = timeToTarget
let v0y = y / t + 0.5 * gravity.length() * t
let v0xz = xz / t
var result = toTargetXZ.normalized()
result *= v0xz
result.y = v0y
return result
}
Upvotes: 3