Reputation: 5260
I would like to do very simple thing, but cannot figure out how to do it in Python/Spark(1.5)/Dataframe (it's all new for me).
original dataset:
code| ISO | country
1 | AFG | Afghanistan state
2 | BOL | Bolivia Plurinational State
new dataset:
code| ISO | country
1 | AFG | Afghanistan
2 | BOL | Bolivia
I would like to do something like this (in pseudo Python?):
iso_to_country_dict = {'AFG': 'Afghanistan', 'BOL': 'Bolivia'}
def mapCountry(iso,country):
if(iso_to_country_dict[iso] is not empty):
return iso_to_country_dict[iso]
return country
dfg = df.select(mapCountry(df['ISO'],df['country']))
Just for simplicity the mapCountry could look like this:
def mapCountry(iso,country):
if(iso=='AFG'):
return 'Afghanistan'
return country
but with this is there error: ValueError: Cannot convert column into bool:
Upvotes: 1
Views: 302
Reputation: 691
I would like to offer a different approach ; UDFs are always an option, but they are somewhat inefficient and cumbersome IMO.
The when
and otherwise
paradigm can solve this issue.
First, for efficiency - represent the dictionary by a DataFrame:
df_iso = spark.createDataFrame([('bol', 'Bolivia'),
('hti', 'Cape-Verde'),
('fra', 'France')], ['iso', 'country'])
Then lets consider the following data:
df_data = spark.createDataFrame(
map(lambda x: (x, ),
['fra', 'esp', 'eng', 'usa', 'bol']), ['data'])
Then we make the ISO lookup by a join:
df_data = df_data.join(df_iso, F.col('data') == F.col('iso'),
'left_outer')
And finally, we add the desired column (I named it result
) based on the match:
df_data = df_data.select(
F.col('data'),
F.when(F.col('iso').isNull(), F.col('data'))
.otherwise(F.col('country')).alias('result'))
The result would then be:
+----+-------+
|data| res|
+----+-------+
| esp| esp|
| bol|Bolivia|
| eng| eng|
| fra| France|
| usa| usa|
+----+-------+
Upvotes: 0
Reputation: 5260
Well, I found solution, but don't know if this is the cleanest way how to do that. Any other ideas?
iso_to_country_dict = {'BOL': 'Bolivia', 'HTI': 'Cape Verde','COD':'Congo','PRK':'Korea','LAO':'Laos'}
def mapCountry(iso,country):
if(iso in iso_to_country_dict):
return iso_to_country_dict[iso]
return country
mapCountry=udf(mapCountry)
dfg = df.select(df['iso'],mapCountry(df['iso'],df['country']).alias('country'),df['C2'],df['C3'],df['C4'],df['C5'])
note: C1,C2,..C5 are names of all other columns
Upvotes: 1