alexshchep
alexshchep

Reputation: 268

Pandas Dataframe delete row with certain value until that value changes

I have a dataframe with zeros at the top of the dataframe. These zeroes act as NAs. I would like to delete them until other values begin to appear.

So, I would like this dataframe:

    df_
    Out[114]: 
                    A         B         C
    2016-08-27 -0.263963  0.000000  0.693514
    2016-08-28 -0.085663  0.000000 -0.715981
    2016-08-29  1.408283  0.000000  2.513716
    2016-08-30 -0.591532  0.000000 -1.468227
    2016-08-31 -0.973261  0.000000  0.848670
    2016-09-01  0.694384 -0.214615  0.561752
    2016-09-02 -1.468527  0.259413  1.195574
    2016-09-03 -1.471785  0.006788  0.688078
    2016-09-04 -0.817770  0.453037  0.632851
    2016-09-05  1.129863  0.000000 -0.296562

to drop just the top 5 rows, but keep the rest (including the last ones) because column 'B' contains zeros in the first five rows.

Upvotes: 4

Views: 2360

Answers (1)

EdChum
EdChum

Reputation: 394021

You can test if all rows are not equal to 0 with all and axis=1, we use this to mask the df and call first_valid_index and use this to slice the df:

In [40]:
df.loc[df[(df != 0).all(axis=1)].first_valid_index():]

Out[40]:
                   A         B         C
2016-09-01  0.694384 -0.214615  0.561752
2016-09-02 -1.468527  0.259413  1.195574
2016-09-03 -1.471785  0.006788  0.688078
2016-09-04 -0.817770  0.453037  0.632851
2016-09-05  1.129863  0.000000 -0.296562

here is the output from the inner test:

In [37]:
(df != 0).all(axis=1)

Out[37]:
2016-08-27    False
2016-08-28    False
2016-08-29    False
2016-08-30    False
2016-08-31    False
2016-09-01     True
2016-09-02     True
2016-09-03     True
2016-09-04     True
2016-09-05    False
dtype: bool

Upvotes: 4

Related Questions