Reputation: 1601
Say I have the same dataframe from this question:
A0 A1 A2 B0 B1 B2 C0 C1
0 0.84 0.47 0.55 0.46 0.76 0.42 0.24 0.75
1 0.43 0.47 0.93 0.39 0.58 0.83 0.35 0.39
2 0.12 0.17 0.35 0.00 0.19 0.22 0.93 0.73
3 0.95 0.56 0.84 0.74 0.52 0.51 0.28 0.03
4 0.73 0.19 0.88 0.51 0.73 0.69 0.74 0.61
5 0.18 0.46 0.62 0.84 0.68 0.17 0.02 0.53
6 0.38 0.55 0.80 0.87 0.01 0.88 0.56 0.72
But instead of wanting to return the minimum value of each row (of only B0, B1, B2)
A0 A1 A2 B0 B1 B2 C0 C1 Minimum
0 0.84 0.47 0.55 0.46 0.76 0.42 0.24 0.75 0.42
1 0.43 0.47 0.93 0.39 0.58 0.83 0.35 0.39 0.39
2 0.12 0.17 0.35 0.00 0.19 0.22 0.93 0.73 0.00
3 0.95 0.56 0.84 0.74 0.52 0.51 0.28 0.03 0.51
4 0.73 0.19 0.88 0.51 0.73 0.69 0.74 0.61 0.51
5 0.18 0.46 0.62 0.84 0.68 0.17 0.02 0.53 0.17
6 0.38 0.55 0.80 0.87 0.01 0.88 0.56 0.72 0.01
I want to return the column name which contains the minimum value of each row (of only B0, B1, B2):
A0 A1 A2 B0 B1 B2 C0 C1 col_of_min
0 0.84 0.47 0.55 0.46 0.76 0.42 0.24 0.75 B2
1 0.43 0.47 0.93 0.39 0.58 0.83 0.35 0.39 B0
2 0.12 0.17 0.35 0.00 0.19 0.22 0.93 0.73 B0
3 0.95 0.56 0.84 0.74 0.52 0.51 0.28 0.03 B2
4 0.73 0.19 0.88 0.51 0.73 0.69 0.74 0.61 B0
5 0.18 0.46 0.62 0.84 0.68 0.17 0.02 0.53 B2
6 0.38 0.55 0.80 0.87 0.01 0.88 0.56 0.72 B1
What's the best way to do this?
Upvotes: 2
Views: 748
Reputation: 210882
you can use filter() in conjunction with idxmin() method:
In [40]: x
Out[40]:
A0 A1 A2 B0 B1 B2 C0 C1
0 0.84 0.47 0.55 0.46 0.76 0.42 0.24 0.75
1 0.43 0.47 0.93 0.39 0.58 0.83 0.35 0.39
2 0.12 0.17 0.35 0.00 0.19 0.22 0.93 0.73
3 0.95 0.56 0.84 0.74 0.52 0.51 0.28 0.03
4 0.73 0.19 0.88 0.51 0.73 0.69 0.74 0.61
5 0.18 0.46 0.62 0.84 0.68 0.17 0.02 0.53
6 0.38 0.55 0.80 0.87 0.01 0.88 0.56 0.72
In [41]: x['col_of_min'] = x.filter(like='B').idxmin(axis=1)
In [42]: x
Out[42]:
A0 A1 A2 B0 B1 B2 C0 C1 col_of_min
0 0.84 0.47 0.55 0.46 0.76 0.42 0.24 0.75 B2
1 0.43 0.47 0.93 0.39 0.58 0.83 0.35 0.39 B0
2 0.12 0.17 0.35 0.00 0.19 0.22 0.93 0.73 B0
3 0.95 0.56 0.84 0.74 0.52 0.51 0.28 0.03 B2
4 0.73 0.19 0.88 0.51 0.73 0.69 0.74 0.61 B0
5 0.18 0.46 0.62 0.84 0.68 0.17 0.02 0.53 B2
6 0.38 0.55 0.80 0.87 0.01 0.88 0.56 0.72 B1
Upvotes: 4