Reputation: 21961
mat_a = np.random.random((5, 5))
mat_b = np.random.random((5, 5))
mat_c = np.random.random((5, 5))
bigmat = np.stack((mat_a, mat_b, mat_c)) # this is a 3, 5, 5 array
for (x, y, z), value in np.ndenumerate(bigmat):
print (x, y, z)
In the example above, how can I loop so that I iterate only across the 5 x 5 array and at each position I get 3 values i.e. loop should run 25 times and each time, I get an array with 3 values (one from each of mat_a, mat_b and mat_c)
bigmat
is reshaped, there should be a way to access element based on specific y, zUpvotes: 3
Views: 1645
Reputation: 23743
If you don't actually need to stack the arrays, and only want to iterate over all three arrays, element-wise, at once, numpy.nditer works - I'm still fuzzy on all its parameters I don't know if it is any faster, test it on a subset.
a1 = np.arange(9).reshape(3,3) + 10
a2 = np.arange(9).reshape(3,3) + 20
a3 = np.arange(9).reshape(3,3) + 30
c = np.nditer((a1, a2, a3))
for thing in c:
print(np.array(thing))
>>>
[10 20 30]
[11 21 31]
[12 22 32]
[13 23 33]
[14 24 34]
[15 25 35]
[16 26 36]
[17 27 37]
[18 28 38]
>>>
Upvotes: 0
Reputation: 231335
There is a function that generates all indices for a given shape, ndindex
.
for y,z in np.ndindex(bigmat.shape[1:]):
print(y,z,bigmat[:,y,z])
0 0 [ 0 25 50]
0 1 [ 1 26 51]
0 2 [ 2 27 52]
0 3 [ 3 28 53]
0 4 [ 4 29 54]
1 0 [ 5 30 55]
1 1 [ 6 31 56]
...
For a simple case like this it isn't much easier than the double for range
loop. Nor will it be faster; but you asked for an iteration.
Another iterator is itertools.product(range(5),range(5))
Timewise, product is pretty good:
In [181]: timeit [bigmat[:,y,z] for y,z in itertools.product(range(5),range(5
...: ))]
10000 loops, best of 3: 26.5 µs per loop
In [191]: timeit [bigmat[:,y,z] for (y,z),v in np.ndenumerate(bigmat[0,...])]
...:
10000 loops, best of 3: 61.9 µs per loop
transposing and reshaping is the fastest way to get a list (or array) of the triplets - but it does not give the indices as well:
In [198]: timeit list(bigmat.transpose(1,2,0).reshape(-1,3))
100000 loops, best of 3: 15.1 µs per loop
But the same operation gets the indices from np.mgrid
(or np.meshgrid
):
np.mgrid[0:5,0:5].transpose(1,2,0).reshape(-1,2)
(though this is surprisingly slow)
Upvotes: 3
Reputation: 1991
Simon's answer is fine. If you reshape things properly you can get them all in a nice array without any looping.
In [33]: bigmat
Out[33]:
array([[[ 0.51701737, 0.90723012, 0.42534365, 0.3087416 , 0.44315561],
[ 0.3902181 , 0.59261932, 0.21231607, 0.61440961, 0.24910501],
[ 0.63911556, 0.16333704, 0.62123781, 0.6298554 , 0.29012245],
[ 0.95260313, 0.86813746, 0.26722519, 0.14738102, 0.60523372],
[ 0.33189713, 0.6494197 , 0.30269686, 0.47312059, 0.84690451]],
[[ 0.95974972, 0.09659425, 0.06765838, 0.36025411, 0.91492751],
[ 0.92421874, 0.31670119, 0.99623178, 0.30394588, 0.30970197],
[ 0.53590091, 0.04273708, 0.97876218, 0.09686119, 0.78394054],
[ 0.5463358 , 0.29239676, 0.6284822 , 0.96649507, 0.05261606],
[ 0.91733464, 0.77312656, 0.45962704, 0.06446105, 0.58643379]],
[[ 0.75161903, 0.43286354, 0.09633492, 0.52275049, 0.40827006],
[ 0.51816158, 0.05330978, 0.49134325, 0.73652136, 0.14437844],
[ 0.83833791, 0.2072704 , 0.18345275, 0.57282927, 0.7218022 ],
[ 0.56180415, 0.85591746, 0.35482315, 0.94562085, 0.92706479],
[ 0.2994697 , 0.99724253, 0.66386017, 0.0121033 , 0.43448805]]])
Reshaping things...
new_bigmat = bigmat.T.reshape([25,3])
In [36]: new_bigmat
Out[36]:
array([[ 0.51701737, 0.95974972, 0.75161903],
[ 0.3902181 , 0.92421874, 0.51816158],
[ 0.63911556, 0.53590091, 0.83833791],
[ 0.95260313, 0.5463358 , 0.56180415],
[ 0.33189713, 0.91733464, 0.2994697 ],
[ 0.90723012, 0.09659425, 0.43286354],
[ 0.59261932, 0.31670119, 0.05330978],
[ 0.16333704, 0.04273708, 0.2072704 ],
[ 0.86813746, 0.29239676, 0.85591746],
[ 0.6494197 , 0.77312656, 0.99724253],
[ 0.42534365, 0.06765838, 0.09633492],
[ 0.21231607, 0.99623178, 0.49134325],
[ 0.62123781, 0.97876218, 0.18345275],
[ 0.26722519, 0.6284822 , 0.35482315],
[ 0.30269686, 0.45962704, 0.66386017],
[ 0.3087416 , 0.36025411, 0.52275049],
[ 0.61440961, 0.30394588, 0.73652136],
[ 0.6298554 , 0.09686119, 0.57282927],
[ 0.14738102, 0.96649507, 0.94562085],
[ 0.47312059, 0.06446105, 0.0121033 ],
[ 0.44315561, 0.91492751, 0.40827006],
[ 0.24910501, 0.30970197, 0.14437844],
[ 0.29012245, 0.78394054, 0.7218022 ],
[ 0.60523372, 0.05261606, 0.92706479],
[ 0.84690451, 0.58643379, 0.43448805]])
Edit: To keep track of indices, you might try the following (open to other ideas here). Each row in xy_index
gives your x,y values respectively for the corresponding row in the new_bigmat
array. This answer doesn't require any loops. If looping is acceptable you can borrow Simon's suggestion in the comments or np.ndindex
as suggested in hpaulj's answer.
row_index, col_index = np.meshgrid(range(5),range(5))
xy_index = np.array([row_index.flatten(), col_index.flatten()]).T
In [48]: xy_index
Out[48]:
array([[0, 0],
[1, 0],
[2, 0],
[3, 0],
[4, 0],
[0, 1],
[1, 1],
[2, 1],
[3, 1],
[4, 1],
[0, 2],
[1, 2],
[2, 2],
[3, 2],
[4, 2],
[0, 3],
[1, 3],
[2, 3],
[3, 3],
[4, 3],
[0, 4],
[1, 4],
[2, 4],
[3, 4],
[4, 4]])
Upvotes: 2
Reputation: 10841
The required result can be obtained by slicing, e.g.:
for x in range(5):
for y in range(5):
print (bigmat[:,x,y])
Upvotes: 1