Reputation: 4635
I've encountered an issue trying to create new column with ifelse
. Quite similar question is this dplyr error: strange issue when combining group_by, mutate and ifelse. Is it a bug?
set.seed(101)
time =sort(runif(10,0,10))
group=rep(c(1,2),each=5)
az=c(sort(runif(5,-1,1),decreasing = T),sort(runif(5,-1,0.2),decreasing = T))
df <- data.frame(time,az,group)
# time az group
#1 0.4382482 0.86326886 1
#2 2.4985572 0.75959146 1
#3 3.0005483 0.46394519 1
#4 3.3346714 0.41374948 1
#5 3.7219838 -0.08975881 1
#6 5.4582855 -0.01547669 2
#7 5.8486663 -0.29161632 2
#8 6.2201196 -0.50599980 2
#9 6.5769040 -0.73105782 2
#10 7.0968402 -0.95366733 2
in the df
I am trying to conditional mutate clas
column. However, since there is NA
inside of sw_time
all clas
column becomes also NA
in which group 1
should be nrm
in usual way.
df1 <- df%>%
group_by(group)%>%
mutate(sw_time=abs(time[which(az<=0.8)[1]]-time[which(az>0)[1]]))%>%
mutate(clas=as.numeric(ifelse(sw_time<3,"nrm","abn")))
Source: local data frame [10 x 5]
Groups: group [2]
time az group sw_time clas
(dbl) (dbl) (dbl) (dbl) (dbl)
1 0.4382482 0.86326886 1 2.060309 NA
2 2.4985572 0.75959146 1 2.060309 NA
3 3.0005483 0.46394519 1 2.060309 NA
4 3.3346714 0.41374948 1 2.060309 NA
5 3.7219838 -0.08975881 1 2.060309 NA
6 5.4582855 -0.01547669 2 NA NA
7 5.8486663 -0.29161632 2 NA NA
8 6.2201196 -0.50599980 2 NA NA
9 6.5769040 -0.73105782 2 NA NA
10 7.0968402 -0.95366733 2 NA NA
thanks in advance for your actions!
Upvotes: 1
Views: 393
Reputation: 887088
By converting character
class to numeric
, it will result in NA
. Instead, we may need to have a factor
class that coerces to numeric
df %>%
group_by(group)%>%
mutate(sw_time=abs(time[which(az<=0.8)[1]]-time[which(az>0)[1]]),
clas=as.integer(factor(ifelse(sw_time<3,"nrm","abn"))))
If we are only interested in getting 'nrm', 'abn', just remove the as.integer(factor
wrapping
df%>%
group_by(group)%>%
mutate(sw_time=abs(time[which(az<=0.8)[1]]-time[which(az>0)[1]]),
clas=ifelse(sw_time<3,"nrm","abn"))
# time az group sw_time clas
# <dbl> <dbl> <dbl> <dbl> <chr>
#1 0.4382482 0.86326886 1 2.060309 nrm
#2 2.4985572 0.75959146 1 2.060309 nrm
#3 3.0005483 0.46394519 1 2.060309 nrm
#4 3.3346714 0.41374948 1 2.060309 nrm
#5 3.7219838 -0.08975881 1 2.060309 nrm
#6 5.4582855 -0.01547669 2 NA <NA>
#7 5.8486663 -0.29161632 2 NA <NA>
#8 6.2201196 -0.50599980 2 NA <NA>
#9 6.5769040 -0.73105782 2 NA <NA>
#10 7.0968402 -0.95366733 2 NA <NA>
We can also use data.table
library(data.table)
setDT(df)[, c("sw_time", "clas") := {
v1 <- abs(time[which(az <= 0.8)[1]] - time[which(az > 0)[1]])
.(v1 , c("abn", "nrm")[(v1 < 3) + 1]) },
by = group]
If the final output does not involve 'nrm', 'abn', we don't need the ifelse
part. We can directly use as.integer(sw_time <3)
Upvotes: 2