Reputation: 3768
set.seed(1)
names <- letters[1:3]
df <-
data.frame(id = LETTERS[1:5]
names = replicate(5,paste0(sample(names, sample(1:3)),collapse = ',')),
stringsAsFactors = F)
Then each id in df
is associated with 1-3 names.
> df
id names
1 A a
2 B b,c
3 C c,b
4 D c
5 E b,c
How to efficiently populate a matrix (5x3 in our example) with 0's (name not in row) and 1' (name in row). Matrix would look like:
res <-
matrix(nrow = nrow(df), ncol = length(names),
dimnames = list(df$id, names), data = 0)
> res
a b c
A 0 0 0
B 0 0 0
C 0 0 0
D 0 0 0
E 0 0 0
And the first row would be (1,0,0), second (0,1,1) etc.
Upvotes: 1
Views: 221
Reputation: 886948
We can use table
after splitting the 'names' by ,
, and stack
ing the list
output to a data.frame
.
table(stack(setNames(strsplit(df$names, ","), df$id))[2:1])
# values
#ind a b c
# A 1 0 0
# B 0 1 1
# C 0 1 1
# D 0 0 1
# E 0 1 1
Or another option is mtabulate
from qdapTools
after splitting the 'names' column.
library(qdapTools)
mtabulate(setNames(strsplit(df$names, ","), df$id))
# a b c
#A 1 0 0
#B 0 1 1
#C 0 1 1
#D 0 0 1
#E 0 1 1
If we are using dplyr/tidyr
, one option is separate_rows/spread
library(dplyr)
library(tidyr)
separate_rows(df, names) %>%
mutate(v1 = 1) %>%
spread(names, v1, fill = 0)
# id a b c
#1 A 1 0 0
#2 B 0 1 1
#3 C 0 1 1
#4 D 0 0 1
#5 E 0 1 1
Or we can use dcast
from data.table
after splitting
library(data.table)
dcast(setDT(df)[, strsplit(names, ","), id], id ~V1, length)
df <- structure(list(id = c("A", "B", "C", "D", "E"), names = c("a",
"b,c", "c,b", "c", "b,c")), .Names = c("id", "names"),
class = "data.frame", row.names = c("1", "2", "3", "4", "5"))
Upvotes: 3