Reputation: 359
I'm sure this is a simple thing to do but I am new to Python and cannot work it out!
I have a data frame with one column containing coordinates and I am wanting to remove the brackets and add the Lat/Lon values into separate columns.
Current dataframe:
gridReference
(56.37769816725615, -4.325049868061924)
(56.37769816725615, -4.325049868061924)
(51.749167440074324, -4.963575226888083)
wanted dataframe:
Latitude Longitude
56.37769816725615 -4.325049868061924
56.37769816725615 -4.325049868061924
51.749167440074324 -4.963575226888083
Thanks for your help
EDIT: I have tried:
df['lat'], df['lon'] = df.gridReference.str.strip(')').str.strip('(').str.split(', ').values.tolist()
but I get the error:
AttributeError: Can only use .str accessor with string values, which use np.object_ dtype in pandas
I then tried adding:
df['gridReference'] = df['gridReference'].astype('str')
and got the error:
ValueError: too many values to unpack (expected 2)
Any help would be appreciated as I am not sure how to make this work! :)
EDIT:
I keep getting the error
AttributeError: Can only use .str accessor with string values, which use np.object_ dtype in pandas
the output for df.dtypes is:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 22899 entries, 0 to 22898
Data columns (total 1 columns):
LatLon 22899 non-null object
dtypes: object(1)
the output for df.info() is:
gridReference object
dtype: object
Upvotes: 5
Views: 8122
Reputation: 31
Answering to the question: Input is a column with tuples similar column b in my code. Output needed is two columns which is similar to b1 and b2 column in my answer.
Created a DataFrame: In [2]: df = pd.DataFrame({'a':[1,2], 'b':[(1,2), (3,4)]})
In [3]: df
Out[3]:
a b
0 1 (1, 2)
1 2 (3, 4)
Convert a column to list:
In [4]: df['b'].tolist()
Out[4]: [(1, 2), (3, 4)]
Create required dataframe [Output required] using the list:
In [5]: pd.DataFrame(df['b'].tolist(), index=df.index)
Out[5]:
0 1
0 1 2
1 3 4
We can also try to get the output in the same dataframe using the below code: In [6]: df[['b1', 'b2']] = pd.DataFrame(df['b'].tolist(), index=df.index)
In [7]: df
Out[7]:
a b b1 b2
0 1 (1, 2) 1 2
1 2 (3, 4) 3 4
Upvotes: 2
Reputation: 29711
df['gridReference'].str.strip('()') \
.str.split(', ', expand=True) \
.rename(columns={0:'Latitude', 1:'Longitude'})
Latitude Longitude
0 56.37769816725615 -4.325049868061924
1 56.37769816725615 -4.325049868061924
2 51.749167440074324 -4.963575226888083
Upvotes: 8
Reputation: 2647
>>> df = pd.DataFrame({'latlong': ['(12, 32)', '(43, 54)']})
>>> df
latlong
0 (12, 32)
1 (43, 54)
>>> split_data = df.latlong.str.strip(')').str.strip('(').str.split(', ')
>>> df['lat'] = split_data.apply(lambda x: x[0])
>>> df['long'] = split_data.apply(lambda x: x[1])
latlong lat long
0 (12, 32) 12 43
1 (43, 54) 32 54
Upvotes: 0