Reputation: 1803
Newbie question. I am looping through a list and need keep state in between the items. For instance
val l = List("a", "1", "2", "3", "b", "4")
var state: String = ""
l.foreach(o => {
if (toInt(o).isEmpty) state = o else println(state + o.toString)
})
what's the alternative for the usage of var here?
Upvotes: 1
Views: 973
Reputation: 9225
There are two major options to pass a state in functional programming when processing collections (I assume you want to get your result as a variable):
Recursion (classic)
val xs = List("a", "11", "212", "b", "89")
@annotation.tailrec
def fold(seq: ListBuffer[(String, ListBuffer[String])],
xs: Seq[String]): ListBuffer[(String, ListBuffer[String])] = {
(seq, xs) match {
case (_, Nil) =>
seq
case (_, c :: tail) if toInt(c).isEmpty =>
fold(seq :+ ((c, ListBuffer[String]())), tail)
case (init :+ ((c, seq)), i :: tail) =>
fold(init :+ ((c, seq :+ i)), tail)
}
}
val result =
fold(ListBuffer[(String, ListBuffer[String])](), xs)
// Get rid of mutable ListBuffer
.toSeq
.map {
case (c, seq) =>
(c, seq.toSeq)
}
//> List((a,List(11, 212)), (b,List(89)))
foldLeft et al.
val xs = List("a", "11", "212", "b", "89")
val result =
xs.foldLeft(
ListBuffer[(String, ListBuffer[String])]()
) {
case (seq, c) if toInt(c).isEmpty =>
seq :+ ((c, ListBuffer[String]()))
case (init :+ ((c, seq)), i) =>
init :+ ((c, seq :+ i))
}
// Get rid of mutable ListBuffer
.toSeq
.map {
case (c, seq) =>
(c, seq.toSeq)
}
//> List((a,List(11, 212)), (b,List(89)))
Which one is better? Unless you want to abort your processing in the middle of your collection (like e.g. in find
) foldLeft
is considered a better way and it has slightly less boilerplate, but otherwise they are very similar.
I'm using ListBuffer
here to avoid reversing lists.
Upvotes: 0
Reputation: 4133
As simple as:
val list: List[Int] = List.range(1, 10) // Create list
def updateState(i : Int) : Int = i + 1 // Generate new state, just add one to each position. That will be the state
list.foldRight[List[(Int,Int)]](List())((a, b) => (a, updateState(a)) :: b)
Note that the result is a list of Tuple2: (Element, State), and each state depends on the element of the list.
Hope this helps
Upvotes: 0
Reputation: 39577
Pass an arg:
scala> def collapse(header: String, vs: List[String]): Unit = vs match {
| case Nil =>
| case h :: t if h.forall(Character.isDigit) => println(s"$header$h") ; collapse(header, t)
| case h :: t => collapse(h, t)
| }
collapse: (header: String, vs: List[String])Unit
scala> collapse("", vs)
a1
a2
a3
b4
Upvotes: 0
Reputation: 53819
Use foldLeft
:
l.foldLeft(""){ (state, o) =>
if(toInt(o).isEmpty) o
else {
println(state + o.toString)
state
}
}
Upvotes: 2
Reputation: 21
You should keep in mind that it's sometimes (read: when it makes the code more readable and maintainable by others) okay to use mutability when performing some operation that's easily expressed with mutable state as long as that mutable state is confined to as little of your program as possible. Using (e.g.) foldLeft
to maintain an accumulator here without using a var
doesn't gain you much.
That said, here's one way to go about doing this:
val listOfThings: Seq[Either[Char, Int]] = Seq(Left('a'), Right(11), Right(212), Left('b'), Right(89))
val result = listOfThings.foldLeft(Seq[(Char, Seq[Int])]()) {
case (accumulator, Left(nextChar)) => accumulator :+ (nextChar, Seq.empty)
case (accumulator, Right(nextInt)) =>
val (currentChar, currentSequence) = accumulator.last
accumulator.dropRight(1) :+ (currentChar, currentSequence :+ nextInt)
}
result foreach {
case (char, numbers) => println(numbers.map(num => s"$char-$num").mkString(" "))
}
Upvotes: 2