Reputation: 1697
How to check that a type implements an interface in Julia?
For exemple iteration interface is implemented by the functions start
, next
, done
.
I need is to have a specialization of a function depending on wether the argument type implements a given interface or not.
EDIT
Here is an example of what I would like to do.
Consider the following code:
a = [7,8,9]
f = 1.0
s = Set()
push!(s,30)
push!(s,40)
function getsummary(obj)
println("Object of type ", typeof(obj))
end
function getsummary{T<:AbstractArray}(obj::T)
println("Iterable Object starting with ", next(obj, start(obj))[1])
end
getsummary(a)
getsummary(f)
getsummary(s)
The output is:
Iterable Object starting with 7
Object of type Float64
Object of type Set{Any}
Which is what we would expect since Set
is not an AbstractArray
. But clearly my second method only requires the type T to implement the iteration interface.
my issue isn't only related to the iteration interface but to all interfaces defined by a set of functions.
EDIT-2
I think my question is related to
https://github.com/JuliaLang/julia/issues/5
Since we could have imagined something like T<:Iterable
Upvotes: 4
Views: 1306
Reputation: 12051
Typically, this is done with traits. See Traits.jl for one implementation; a similar approach is used in Base
to dispatch on Base.iteratorsize
, Base.linearindexing
, etc. For instance, this is how Base
implements collect
using the iteratorsize
trait:
"""
collect(element_type, collection)
Return an `Array` with the given element type of all items in a collection or iterable.
The result has the same shape and number of dimensions as `collection`.
"""
collect{T}(::Type{T}, itr) = _collect(T, itr, iteratorsize(itr))
_collect{T}(::Type{T}, itr, isz::HasLength) = copy!(Array{T,1}(Int(length(itr)::Integer)), itr)
_collect{T}(::Type{T}, itr, isz::HasShape) = copy!(similar(Array{T}, indices(itr)), itr)
function _collect{T}(::Type{T}, itr, isz::SizeUnknown)
a = Array{T,1}(0)
for x in itr
push!(a,x)
end
return a
end
See also Mauro Werder's talk on traits.
I would define a iterability(::T)
trait as follows:
immutable Iterable end
immutable NotIterable end
iterability(T) =
if method_exists(length, (T,)) || !isa(Base.iteratorsize(T), Base.HasLength)
Iterable()
else
NotIterable()
end
which seems to work:
julia> iterability(Set)
Iterable()
julia> iterability(Number)
Iterable()
julia> iterability(Symbol)
NotIterable()
Upvotes: 6
Reputation: 8566
you can check whether a type
implements an interface
via methodswith
as follows:
foo(a_type::Type, an_interface::Symbol) = an_interface ∈ [i.name for i in methodswith(a_type, true)]
julia> foo(EachLine, :done)
true
but I don't quite understand the dynamic dispatch approach you mentioned in the comment, what does the generic function looks like? what's the input & output of the function? I guess you want something like this?
function foo(a_type::Type, an_interface::Symbol)
# assume bar baz are predefined
if an_interface ∈ [i.name for i in methodswith(a_type, true)]
# call function bar
else
# call function baz
end
end
or some metaprogramming stuff to generate those functions respectively at compile time?
Upvotes: 1