Reputation: 67
I've looked for similar threads but can't find a solution.
I've grouped the below dataset by carrier and created new variables to see average and sum delay times successfully. Now I simply want to arrange the data by avg delay, but when I put the below code in it's returning the same data for every row. Can anyone help me figure out where I went wrong?
Using dplyr package, dataset is "flights", have filtered out the na values using:
filter(!is.na(dep_delay), !is.na(arr_delay)).
I got the data and excercise from section 5.6.7 of this resource http://r4ds.had.co.nz/transform.html#exercises-11
bycarrier %>%
transmute(
arrsum = sum(arr_delay),
arravg = mean(arr_delay),
depsum = sum(dep_delay),
depavg = mean(dep_delay)
) %>%
arrange(desc(arravg))
Returns:
Adding missing grouping variables: `carrier`
Source: local data frame [327,346 x 5]
Groups: carrier [16]
carrier arrsum arravg depsum depavg
<chr> <dbl> <dbl> <dbl> <dbl>
1 F9 14928 21.9207 13757 20.20117
2 F9 14928 21.9207 13757 20.20117
3 F9 14928 21.9207 13757 20.20117
4 F9 14928 21.9207 13757 20.20117
5 F9 14928 21.9207 13757 20.20117
6 F9 14928 21.9207 13757 20.20117
7 F9 14928 21.9207 13757 20.20117
8 F9 14928 21.9207 13757 20.20117
9 F9 14928 21.9207 13757 20.20117
10 F9 14928 21.9207 13757 20.20117
# ... with 327,336 more rows
Upvotes: 0
Views: 137
Reputation: 481
I think you need to use the function summarise
instead of transmute
as follows :
bycarrier %>%
summarise(
arrsum = sum(arr_delay),
arravg = mean(arr_delay),
depsum = sum(dep_delay),
depavg = mean(dep_delay)
) %>%
arrange(desc(arravg))
That will give the output :
# A tibble: 16 x 5
carrier arrsum arravg depsum depavg
<chr> <dbl> <dbl> <dbl> <dbl>
1 F9 14928 21.9207048 13757 20.201175
2 FL 63868 20.1159055 59074 18.605984
3 EV 807324 15.7964311 1013928 19.838929
4 YV 8463 15.5569853 10281 18.898897
5 OO 346 11.9310345 365 12.586207
6 MQ 269767 10.7747334 261521 10.445381
7 WN 116214 9.6491199 212717 17.661657
8 B6 511194 9.4579733 700883 12.967548
9 9E 127624 7.3796692 284306 16.439574
10 UA 205589 3.5580111 694361 12.016908
11 US 42232 2.1295951 74261 3.744693
12 VX 9027 1.7644644 65263 12.756646
13 DL 78366 1.6443409 439595 9.223950
14 AA 11638 0.3642909 273758 8.569130
15 HA -2365 -6.9152047 1676 4.900585
16 AS -7041 -9.9308886 4134 5.830748
Upvotes: 2