Reputation: 113
I tried to make train/val.prototxt using leveldb by caffe python interface:
layer {
name: "cifar"
type: "Data"
top: "data"
top: "label"
data_param {
source: "/home/youngwan/data/cifar10/cifar10-gcn-leveldb-splits/cifar10_full_train_leveldb_padded"
batch_size: 100
backend: LEVELDB
}
transform_param {
mean_file: "/home/youngwan/data/cifar10/cifar10-gcn-leveldb-splits/paddedmean.binaryproto"
mirror: 1
crop_size: 32
}
include: { phase: TRAIN }
}
But in caffe python interface, I can't find a proper datalayer python wrapper(e.g., L.MemoryData
) even though I tried to find examples and tutorials in BLVC/caffe page.
Could you notice which 'L.xxx'
layer I can use it?
Upvotes: 1
Views: 155
Reputation: 114866
Using caffe.NetSpec()
interface, you can have all the layers you want:
from caffe import layers as L, params as P
cifar = L.Data(data_param={'source': '/home/youngwan/data/cifar10/cifar10-gcn-leveldb-splits/cifar10_full_train_leveldb_padded',
'batch_size': 100,
'backend': P.Data.LEVELDB},
transform_param={'mean_file': '/home/youngwan/data/cifar10/cifar10-gcn-leveldb-splits/paddedmean.binaryproto',
'mirror': 1,
'crop_size': 32},
include={'phase':caffe.TRAIN})
Basically, L.<layer type>
defines a layer of type <layer type>
.
Upvotes: 1