Reputation: 647
I need to sum up the values according to the timeline, here's the data
userid user_count time
215981 1702099122 1 2014-10-16
762721 2631243080 1 2014-11-17
806291 2753297247 1 2014-10-13
927621 3177288950 1 2014-11-22
136961 1632673193 1 2015-10-12
374601 1801088453 1 2015-11-9
If I use aggregate to add a column called user_time
user_time <- aggregate(user_count ~time, df, sum)
Then I will get the total user_count on each day, user_time will be all 1. However, I want to compute the sum up to each day. For example, user_time on 2014-11-22 should be 4, on 2014-10-16 should be 2. I wonder how to do it properly. Thank you.
Upvotes: 1
Views: 84
Reputation: 887241
Perhaps we need a cumsum
library(dplyr)
df %>%
arrange(time) %>%
mutate(Count = cumsum(user_count))
Or using base R
transform(df[order(df$time),], Count = cumsum(user_count))
Upvotes: 2