Reputation: 311
I have a dict of types of regions, within each a dict of sub-regions, and within each of those a pandas dataframe object, indexed to the period from which I need to compute each parameter (column) time series. Additionally, I need it in two units.
So I created something like this:
regions = ['region_x', 'region_y']
sub_regions = ['a', 'b', 'c']
parameters = ['x', 'y', 'z']
units = ['af', 'cbm']
start = datetime(2000, 01, 01)
end = datetime(2000, 01, 03)
arrays = [parameters * 2, units * 3]
cols = pd.MultiIndex.from_arrays(arrays)
empty_df = pd.DataFrame(index=pd.date_range(start, end), columns=cols).fillna(0.0)
tab_dict = {}
for region in regions:
tab_dict.update({region: {}})
for sub_region in sub_regions:
tab_dict[region].update({sub_region: empty_df})
Which returns
{'region_y':
{'a': x y z x y z
af cbm af cbm af cbm
2000-01-01 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-02 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-03 0.0 0.0 0.0 0.0 0.0 0.0,
'c': x y z x y z
af cbm af cbm af cbm
2000-01-01 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-02 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-03 0.0 0.0 0.0 0.0 0.0 0.0,
'b': x y z x y z
af cbm af cbm af cbm
2000-01-01 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-02 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-03 0.0 0.0 0.0 0.0 0.0 0.0},
'region_x':
{'a': x y z x y z
af cbm af cbm af cbm
2000-01-01 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-02 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-03 0.0 0.0 0.0 0.0 0.0 0.0,
'c': x y z x y z
af cbm af cbm af cbm
2000-01-01 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-02 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-03 0.0 0.0 0.0 0.0 0.0 0.0,
'b': x y z x y z
af cbm af cbm af cbm
2000-01-01 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-02 0.0 0.0 0.0 0.0 0.0 0.0
2000-01-03 0.0 0.0 0.0 0.0 0.0 0.0}}
Now I need to extract a value from each day (using np.random
here) and somehow insert that into it's proper place. I have had success getting into a single-nested dict and updating a DataFrame object (using dict_[key].loc[date] = x
), but a 'similar' approach here returns SettingWithCopyWarning and does not update the dataframes.
for day in rrule.rrule(rrule.DAILY, dtstart=start, until=end):
for region in regions:
for sub_region in sub_regions:
for parameter in parameters:
for unit in units:
unit_af = np.random.randint(100)
unit_cbm = unit_af * 2
tab_dict[region][sub_region][parameter]['af'].loc[day] = unit_af
tab_dict[region][sub_region][parameter]['cbm'].loc[day] = unit_cbm
It just returns what I had started with. I would greatly appreciate any advice on how to update these values. Excuse the messy code, this was the simplest I could write to reproduce my (much uglier) problem.
Upvotes: 1
Views: 299
Reputation: 294218
specify both index and column in loc
Try
for day in rrule.rrule(rrule.DAILY, dtstart=start, until=end):
for region in regions:
for sub_region in sub_regions:
for parameter in parameters:
for unit in units:
unit_af = np.random.randint(100)
unit_cbm = unit_af * 2
tab_dict[region][sub_region][parameter].loc[day, 'af'] = unit_af
tab_dict[region][sub_region][parameter].loc[day, 'cbm'] = unit_cbm
Upvotes: 2