Md Shopon
Md Shopon

Reputation: 823

Error in keras when compiling autoencoder?

This is the model of my autoencoder:

input_img = Input(shape=(1, 32, 32))

x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(input_img)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 2, 2, activation='relu', border_mode='same')(x)
encoded = MaxPooling2D((2, 2), border_mode='same')(x)

x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, 3, 3, activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(1, 3, 3, activation='sigmoid', border_mode='same')(x)

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

This is my fit and predict function:

autoencoder.fit(X_train, X_train,
            nb_epoch=10,
            batch_size=128,
            shuffle=True,
            validation_data=(X_test, X_test))

decoded_imgs = autoencoder.predict(X_test)

When i try to compile this i get the following error. All the images of my dataset are 32x32 pixels. Why this error then ?

Exception: Error when checking model target: expected convolution2d_7 to have shape (None, 1, 28, 28) but got array with shape (4200, 1, 32, 32)

What change do i need to do in my model such that the input shape becomes (1,32,32) ?

Upvotes: 1

Views: 348

Answers (1)

Marcin Możejko
Marcin Możejko

Reputation: 40506

That was simple:

input_img = Input(shape=(1, 32, 32))

x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(input_img)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 2, 2, activation='relu', border_mode='same')(x)
encoded = MaxPooling2D((2, 2), border_mode='same')(x)

x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(1, 3, 3, activation='sigmoid', border_mode='same')(x)

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

You forgot about adding appropriate border_mode='same' in the 6th convolutional layer.

Upvotes: 2

Related Questions