Reputation: 49
I have run my solution on Cplex and got the result below. It ran many iterations with star (*) character at last. I have printed the solution status = 6. Does that mean my problem can not reach optimal and the variables I got can not be precise?
Tried aggregator 1 time.
QP Presolve eliminated 1070 rows and 7712 columns.
Aggregator did 1 substitutions.
Reduced QP has 19229 rows, 11762 columns, and 70837 nonzeros.
Reduced QP objective Q matrix has 9999 nonzeros.
Presolve time = 0.06 sec. (15.71 ticks)
Parallel mode: using up to 4 threads for barrier.
***NOTE: Found 185 dense columns.
Number of nonzeros in lower triangle of A*A' = 237322
Using Nested Dissection ordering
Total time for automatic ordering = 0.51 sec. (186.51 ticks)
Summary statistics for Cholesky factor:
Threads = 4
Rows in Factor = 19414
Integer space required = 84705
Total non-zeros in factor = 1315542
Total FP ops to factor = 377093574
Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf
0 2.1556826e+024 -2.1556826e+024 2.90e+016 0.00e+000 4.15e+012
1 2.8969373e+022 -2.8969375e+022 3.37e+015 0.00e+000 4.82e+011
2 6.6438243e+021 -6.6438260e+021 1.61e+015 0.00e+000 2.31e+011
3 1.5738876e+021 -1.5738892e+021 7.85e+014 0.00e+000 1.12e+011
4 8.7363163e+020 -8.7363321e+020 5.85e+014 0.00e+000 8.36e+010
5 5.6810167e+020 -5.6810318e+020 4.72e+014 0.00e+000 6.74e+010
6 1.3407969e+020 -1.3408088e+020 2.29e+014 0.00e+000 3.28e+010
7 2.6178239e+019 -2.6178999e+019 1.01e+014 0.00e+000 1.45e+010
8 1.5196152e+018 -1.5199449e+018 2.43e+013 0.00e+000 3.48e+009
9 1.8788865e+016 -1.8834049e+016 2.61e+012 0.00e+000 3.73e+008
10 1.1565062e+015 -1.1745630e+015 5.17e+011 0.00e+000 7.39e+007
11 1.8402445e+014 -1.9572763e+014 5.36e+010 0.00e+000 7.67e+006
12 2.3338839e+013 -3.9167399e+013 6.84e-001 0.00e+000 3.16e+003
13 -2.0461928e+013 -1.0305044e+013 2.72e-001 0.00e+000 1.81e+003
14 -8.5727163e+013 -2.7114059e+012 1.92e-001 0.00e+000 9.54e+002
15 -1.2863131e+014 -4.3393850e+011 1.74e-001 0.00e+000 1.69e+003
16 -3.3998821e+014 -6.2601017e+010 2.44e-001 0.00e+000 1.63e+002
17 -4.8972995e+014 -8.9929658e+009 3.81e-001 0.00e+000 8.95e+001
18 -8.0163587e+014 -1.2980223e+009 3.85e-001 0.00e+000 3.06e+001
19 -9.9926360e+014 -1.9645121e+008 8.59e-002 0.00e+000 2.50e+001
20 -2.3645253e+015 -3.3591755e+007 1.85e-001 0.00e+000 1.81e+001
21 -2.3645489e+015 -3.6655103e+007 3.93e-001 0.00e+000 1.82e+001
22 -2.3665146e+015 -4.2775757e+007 3.87e-001 0.00e+000 1.80e+001
23 -2.4122749e+015 -5.0062938e+007 5.21e-001 0.00e+000 1.76e+001
24 -2.5774166e+015 -1.0009577e+007 1.46e+000 0.00e+000 1.88e+001
25 -2.5830270e+015 -1.6715236e+007 1.81e+000 0.00e+000 1.87e+001
26 -3.2012216e+015 -5.6710775e+006 5.38e-001 0.00e+000 1.75e+001
27 -7.5080027e+015 -1.9991081e+006 1.72e+000 0.00e+000 1.74e+001
28 -1.4664526e+016 -9.4070118e+005 9.55e-001 0.00e+000 1.74e+001
29 -1.4671054e+016 -2.3754747e+006 5.81e+000 0.00e+000 1.74e+001
30 -1.4675288e+016 -5.8554481e+006 4.72e+000 0.00e+000 1.75e+001
31 -1.4688208e+016 -1.5933011e+007 4.63e+000 0.00e+000 1.75e+001
32 -1.4820493e+016 -5.0999417e+007 5.64e+000 0.00e+000 1.76e+001
33 -1.8009464e+016 -1.0809049e+007 4.77e+000 0.00e+000 1.74e+001
34 -2.1147351e+016 -1.5196820e+007 5.82e+001 0.00e+000 1.74e+001
35 -3.1087060e+016 -4.1509264e+006 1.79e+001 0.00e+000 1.74e+001
36 -4.6998748e+016 -1.5490984e+006 6.66e+000 0.00e+000 1.74e+001
37 -6.6410451e+016 -9.0730197e+005 1.00e+001 0.00e+000 1.73e+001
38 -6.6412915e+016 -1.2692245e+006 2.97e+001 0.00e+000 1.74e+001
39 -6.6421938e+016 -2.3703454e+006 2.11e+001 0.00e+000 1.74e+001
40 -6.6467293e+016 -7.3051760e+006 5.57e+001 0.00e+000 1.74e+001
41 -6.6608951e+016 -1.9147451e+007 3.27e+001 0.00e+000 1.75e+001
42 -6.7172366e+016 -6.3713529e+007 2.44e+001 0.00e+000 1.75e+001
43 -6.8996611e+016 -1.6047844e+008 3.13e+001 0.00e+000 1.74e+001
44 -7.5224067e+016 -2.9844653e+008 2.22e+001 0.00e+000 1.74e+001
45 -8.8541981e+016 -2.9298621e+008 1.93e+001 0.00e+000 1.72e+001
46 -1.5484919e+017 -7.7191292e+009 1.99e+001 0.00e+000 1.68e+001
47 -2.4846059e+017 -2.0001282e+009 4.10e+001 0.00e+000 1.67e+001
48 -2.9179330e+017 -3.4143835e+009 6.96e+001 0.00e+000 1.81e+001
49 -3.0331831e+017 -8.6988051e+009 6.82e+001 0.00e+000 1.79e+001
50 -5.0822921e+017 -5.3511719e+009 9.99e+001 0.00e+000 1.61e+001
51 -8.7831029e+017 -1.1762106e+009 2.51e+001 0.00e+000 1.62e+001
52 -1.2006404e+018 -6.0523067e+009 1.75e+002 0.00e+000 1.87e+001
* -2.5774166e+015 -1.0009577e+007 1.46e+000 0.00e+000 1.88e+001
Barrier time = 5.75 sec. (1675.34 ticks)
Total time on 4 threads = 5.75 sec. (1675.34 ticks)
Solution status = 6 :
Upvotes: 0
Views: 300
Reputation: 3940
Yes, it means that a solution is possible, but not optimal
I suggest you try a different algorithm, by default, the LP is set for either Automatic or Primal Simplex, maybe changing the algorithm up could help
Are you solving an LP or MIP?
Edit Then possibly, there is a solution, but there is no way to achieve it because some constraint/bound cant be achieved
You might have luck if you try (if that is possible for you problem) to either write a small script that creates the model one constraint at a time, solves it, and if perhaps when you add constraint number 50, it returns status code 6 again, you skip that constraint and move on to constraint 51 etc
Alternatively, you could loop over the constraints, temporarily disabling just one constraint and solving, and re-enabling it afterwards and moving on to the next one to find which constraints are giving you problems
Also, this might be of some help
Upvotes: 1