Reputation: 294218
consider the DateTimeIndex
dates
dates = pd.date_range('2016-01-29', periods=4, freq='BM')
dates
DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29'],
dtype='datetime64[ns]', freq='BM')
I want to extend the index by one period at the frequency attached to the object.
I expect
pd.date_range('2016-01-29', periods=5, freq='BM')
DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29',
'2016-05-31'],
dtype='datetime64[ns]', freq='BM')
I've tried
dates.append(dates[[-1]] + pd.offsets.BusinessMonthEnd())
However
dates
PerformanceWarning: Non-vectorized DateOffset being applied to Series or DatetimeIndex
Upvotes: 12
Views: 16963
Reputation: 6204
The best solution is:
import pandas as pd
dates = pd.date_range('2016-01-29', periods=4, freq='BM')
extended = dates.union(dates.shift(n)[-n:])
where n is the number of periods you want to add. With n=4
, you will get an extended date range like this:
DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29',
'2016-05-31', '2016-06-30', '2016-07-29', '2016-08-31'],
dtype='datetime64[ns]', freq='BM')
Upvotes: 7
Reputation: 525
To follow up on this, for pandas==1.1.1
, I found this to be the best solution:
dates.union(pd.date_range(dates[-1] + dates.freq, periods=1, freq=dates.freq))
n=3
dates.union(pd.date_range(dates[-1] + dates.freq, periods=n, freq=dates.freq))
Taken by combining @alberto-garcia-raboso's answer and @ballpointben's comment.
Index
, not a DateTimeIndex
:
dates.union([dates[-1] + dates.freq])
dates[-1] + 1
is deprecated.Upvotes: 7
Reputation: 119
I'd use the .tshift
function and then use accordingly:
dr = pd.date_range(start='1/1/2020', periods=5, freq='D')
df = pd.DataFrame(data=[1,2,3,4,5],
index=dr,
columns=['A'])
df.head()
A
2020-01-01 1
2020-01-02 2
2020-01-03 3
2020-01-04 4
2020-01-05 5 <-
df.tshift()
A
2020-01-02 1
2020-01-03 2
2020-01-04 3
2020-01-05 4
2020-01-06 5 <-
other = pd.DataFrame([6], columns=['A'], index=[df.tshift().index[-1]])
other.head()
A
2020-01-06 6
df.append(other)
A
2020-01-01 1
2020-01-02 2
2020-01-03 3
2020-01-04 4
2020-01-05 5
2020-01-06 6 <-
Upvotes: 1
Reputation: 13913
The timestamps in your DatetimeIndex
already know that they are describing business month ends, so you can simply add 1:
import pandas as pd
dates = pd.date_range('2016-01-29', periods=4, freq='BM')
print(repr(dates[-1]))
# => Timestamp('2016-04-29 00:00:00', offset='BM')
print(repr(dates[-1] + 1))
# => Timestamp('2016-05-31 00:00:00', offset='BM')
You can add the latter to your index using .union
:
dates = dates.union([dates[-1] + 1])
print(dates)
# => DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29',
# '2016-05-31'],
# dtype='datetime64[ns]', freq='BM')
Compared to .append
, this retains knowledge of the offset.
Upvotes: 11
Reputation: 210822
try this:
In [207]: dates = dates.append(pd.DatetimeIndex(pd.Series(dates[-1] + pd.offsets.BusinessMonthEnd())))
In [208]: dates
Out[208]: DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29', '2016-05-31'], dtype='datetime64[ns]', freq=None)
or using list
([...]
) instead of pd.Series()
:
In [211]: dates.append(pd.DatetimeIndex([dates[-1] + pd.offsets.BusinessMonthEnd()]))
Out[211]: DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29', '2016-05-31'], dtype='datetime64[ns]', freq=None)
Upvotes: 1